scholarly journals Time-Dependent Reliability Analysis of Reinforced Concrete Beams Subjected to Uniform and Pitting Corrosion and Brittle Fracture

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1820
Author(s):  
Mohamed El Amine Ben Seghier ◽  
Behrooz Keshtegar ◽  
Hussam Mahmoud

Reinforced concrete (RC) beams are basic elements used in the construction of various structures and infrastructural systems. When exposed to harsh environmental conditions, the integrity of RC beams could be compromised as a result of various deterioration mechanisms. One of the most common deterioration mechanisms is the formation of different types of corrosion in the steel reinforcements of the beams, which could impact the overall reliability of the beam. Existing classical reliability analysis methods have shown unstable results when used for the assessment of highly nonlinear problems, such as corroded RC beams. To that end, the main purpose of this paper is to explore the use of a structural reliability method for the multi-state assessment of corroded RC beams. To do so, an improved reliability method, namely the three-term conjugate map (TCM) based on the first order reliability method (FORM), is used. The application of the TCM method to identify the multi-state failure of RC beams is validated against various well-known structural reliability-based FORM formulations. The limit state function (LSF) for corroded RC beams is formulated in accordance with two corrosion types, namely uniform and pitting corrosion, and with consideration of brittle fracture due to the pit-to-crack transition probability. The time-dependent reliability analyses conducted in this study are also used to assess the influence of various parameters on the resulting failure probability of the corroded beams. The results show that the nominal bar diameter, corrosion initiation rate, and the external loads have an important influence on the safety of these structures. In addition, the proposed method is shown to outperform other reliability-based FORM formulations in predicting the level of reliability in RC beams.

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1544
Author(s):  
Younseok Choi ◽  
Junkeon Ahn ◽  
Daejun Chang

In this study, the structural reliability of plate-stiffened prismatic pressure vessels was analyzed over time. A reliability analysis was performed using a time-dependent structural reliability method based on the response surface method (RSM). The plate-stiffened prismatic pressure vessel had a rectangular cross-section with repeated internal load-bearing structures. For the structural analysis, this repeated structure was modeled as a strip, and a structural reliability analysis was performed to identify changes in the reliability index when general corrosion and pitting corrosion occurred in the outer shell. Pitting corrosion was assumed to be randomly distributed on the outer shell, and the reliability index according to the degree of pit (DOP) and time was analyzed. Analysis results confirmed that the change in the reliability index was larger when pitting corrosion was applied compared with when only general corrosion was applied. Additionally, it was confirmed that above a certain DOP, the reliability index was affected.


2021 ◽  
Author(s):  
Silvia J. Sarmiento Nova ◽  
Jaime Gonzalez-Libreros ◽  
Gabriel Sas ◽  
Rafael A. Sanabria Díaz ◽  
Maria C. A. Texeira da Silva ◽  
...  

<p>The Response Surface Method (RSM) has become an essential tool to solve structural reliability problems due to its accuracy, efficacy, and facility for coupling with Nonlinear Finite Element Analysis (NLFEA). In this paper, some strategies to improve the RSM efficacy without compromising its accuracy are tested. Initially, each strategy is implemented to assess the safety level of a highly nonlinear explicit limit state function. The strategy with the best results is then identified and used to carry out a reliability analysis of a prestressed concrete bridge, considering the nonlinear material behavior through NLFEA simulation. The calculated value of &#120573; is compared with the target value established in Eurocode for ULS. The results showed how RSM can be a practical methodology and how the improvements presented can reduce the computational cost of a traditional RSM giving a good alternative to simulation methods such as Monte Carlo.</p>


2000 ◽  
Vol 27 (3) ◽  
pp. 389-399
Author(s):  
H P Hong ◽  
W Zhou

An approach for the time-dependent reliability analysis of reinforced concrete (RC) columns considering the correlation between the axial load and the bending moment or the uncertainty in the load eccentricity is presented. The approach recursively uses the efficient first-order reliability method for the time-dependent reliability analysis. The proposed approach is more efficient than the ones used in the literature for the reliability analysis of RC columns. The proposed approach is used to carry out sensitivity analyses of the reliability of short RC columns to the time-dependent live load effects and to the correlation between the axial load and the bending moment. Results of the analyses suggest that the reliability of RC columns can be sensitive to the correlation between the axial load and the bending moment due to live load. The differences between the reliability indices obtained by considering the live load modeled as a pulse process and as an extreme variate can be large.Key words: reliability, load, time-dependent, time-independent, uncertainty, correlation, concrete, reinforcement, column.


2016 ◽  
Vol 36 (1) ◽  
pp. 39-44
Author(s):  
JM Kaura ◽  
A Lawan ◽  
AA Salihu

Wood experiences a significant loss of strength and stiffness when loaded over period of time. This phenomenon is known as creep-rupture. Several models were developed for the estimation of the reduction of load carrying capacity of timber with time. In this paper, the results of time dependent structural reliability analysis of timber joist produced with Lophiraalata (Ekki) timber specie was presented. Three load duration models were considered in the study, namely: The Model proposed by Wood, Gerhards model, and Nielsen. The timber joist was designed in accordance with the Eurocode 5. The uncertainties in all the basic design variables were fully accommodated in the time dependent reliability analysis. The entire process was implemented using a developed MATLAB program employing First Order Reliability Method (FORM). Time dependent mathematical models for modification of safety index to account for the effect of load duration were proposed. The use of both Gerhards and Nielsen model, for the design of Lophiraalata timber members was recommended.  http://dx.doi.org/10.4314/njt.v36i1.6


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jianguo Zhang ◽  
Jiwei Qiu ◽  
Pidong Wang

This paper presents a novel procedure based on first-order reliability method (FORM) for structural reliability analysis with hybrid variables, that is, random and interval variables. This method can significantly improve the computational efficiency for the abovementioned hybrid reliability analysis (HRA), while generally providing sufficient precision. In the proposed procedure, the hybrid problem is reduced to standard reliability problem with the polar coordinates, where an n-dimensional limit-state function is defined only in terms of two random variables. Firstly, the linear Taylor series is used to approximate the limit-state function around the design point. Subsequently, with the approximation of the n-dimensional limit-state function, the new bidimensional limit state is established by the polar coordinate transformation. And the probability density functions (PDFs) of the two variables can be obtained by the PDFs of random variables and bounds of interval variables. Then, the interval of failure probability is efficiently calculated by the integral method. At last, one simple problem with explicit expressions and one engineering application of spacecraft docking lock are employed to demonstrate the effectiveness of the proposed methods.


2013 ◽  
Vol 712-715 ◽  
pp. 1506-1509 ◽  
Author(s):  
Guang Bo Li ◽  
Guang Wei Meng ◽  
Feng Li ◽  
Li Ming Zhou

The response surface method is adopted to analyze the structural reliability. This paper presents a new response surface method with the uniform design method to predict the failure probability of structures. It is the response surface method based on Fourier orthogonal basis function (RSM-Fourier). To reduce computational costs in structural reliability analysis, approximate Fourier response surface functions for reliability assessment have been suggested. The method involves the selection of training datasets for establishing a model by the uniform design points, the approximation of the limit state function by the trained model and the estimation of the failure probability using first-order reliability method (FORM). The proposed method is applied to examples, compared with other methods to demonstrate its effectiveness.


2008 ◽  
Vol 20 (9) ◽  
pp. 578-587 ◽  
Author(s):  
Giuseppe Carlo Marano ◽  
Giuseppe Quaranta ◽  
Mauro Mezzina

Author(s):  
Zhen Hu ◽  
Xiaoping Du

Maintaining high accuracy and efficiency is a challenging issue in time-dependent reliability analysis. In this work, an accurate and efficient method is proposed for limit-state functions with the following features: The limit-state function is implicit with respect to time, and its input contains stochastic processes; the stochastic processes include only general strength and stress variables, or the limit-state function is monotonic to these stochastic processes. The new method employs random sampling approaches to estimate the distributions of the extreme values of the stochastic processes. The extreme values are then used to replace the corresponding stochastic processes, and consequently the time-dependent reliability analysis is converted into its time-invariant counterpart. The commonly used time-invariant reliability method, the First Order Reliability Method, is then applied for the time-variant reliability analysis. The results show that the proposed method significantly improves the accuracy and efficiency of time-dependent reliability analysis.


Author(s):  
Zhifu Zhu ◽  
Zhen Hu ◽  
Xiaoping Du

The response of a component in a multidisciplinary system is affected by not only the discipline to which it belongs, but also by other disciplines of the system. If any components are subject to time-dependent uncertainties, responses of all the components and the system are also time dependent. Thus, time-dependent multidisciplinary reliability analysis is required. To extend the current time-dependent reliability analysis for a single component, this work develops a time-dependent multidisciplinary reliability method for components in a multidisciplinary system under stationary stochastic processes. The method modifies the First and Second Order Reliability Methods (FORM and SORM) so that the Multidisciplinary Analysis (MDA) is incorporated while approximating the limit-state function of the component under consideration. Then Monte Carlo simulation is used to calculate the reliability without calling the original limit-state function. Two examples are used to demonstrate and evaluate the proposed method.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Chaoyang Xie ◽  
Hong-Zhong Huang

Corrosion is recognized as one of the most important degradation mechanisms that affect the long-term reliability and integrity of metallic structures. Studying the structural reliability with pitting corrosion damage is useful for risk control and safety operation for the corroded structure. This paper proposed a structure corrosion reliability analysis approach based on the physics-based failure model of pitting corrosion, where the states of pitting growth, pit-to-crack, and cracking propagation are included in failure model. Then different probabilistic analysis methods such as Monte-Carlo Simulation (MCS), First-Order Reliability Method (FORM), Second-Order Reliability Method (SORM), and response surface method are employed to calculate the reliability. At last, an example is presented to demonstrate the capability of the proposed structural reliability model and calculating methods for structural corrosion failure analysis.


Sign in / Sign up

Export Citation Format

Share Document