scholarly journals Modification of Mechanical Properties of Expansive Soil from North China by Using Rice Husk Ash

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2789
Author(s):  
Mazahir M. M. Taha ◽  
Cheng-Pei Feng ◽  
Sara H. S. Ahmed

The construction of buildings on expansive soils poses considerable risk of damage or collapse due to soil shrinkage or swelling made likely by the remarkable degree compressibility and weak shear resistance of such soils. In this research, rice husk ash (RHA) was added to expansive soil samples in different quantities of 0%, 4%, 8%, 12%, and 16% by weight of soil to determine their effects on the plasticity index, compaction parameters, consolidation performance, and California bearing ratio (CBR)of clay soil. The results show that the use of RHA increases the effective stress and decreases the void ratio and coefficient of consolidation. Adding 16% RHA resulted in the greatest reduction in the hydraulic conductivity, void ratio, and coefficient of consolidation. The void ratio decreased from 0.96 to 0.93, consolidation coefficient decreased from 2.52 to 2.33 cm2/s, and hydraulic conductivity decreased from 1.12 to 0.80 cm/s. The addition of RHA improved the soil properties and coefficient of consolidation due to the high density and cohesiveness of RHA. The results of this study can be used to provide a suitable basis for the treatment of expansive soil to provide improved conditions for infrastructure construction.

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Fazal E. Jalal ◽  
Sultani Mulk ◽  
Shazim Ali Memon ◽  
Babak Jamhiri ◽  
Ahsan Naseem

Expansive/swell-shrink soils exhibit high plasticity and low strength, which lead to settlement and instability of lightly loaded structures. These problematic soils contain various swelling clay minerals that are unsuitable for engineering requirements. In an attempt to counter the treacherous damage of such soils in modern geotechnical engineering, efforts are underway to utilize environmentally friendly and sustainable waste materials as stabilizers. This study evaluates the strength and consolidation characteristics of expansive soils treated with marble dust (MD) and rice husk ash (RHA) through a multitude of laboratory tests, including consistency limits, compaction, uniaxial compression strength (UCS), and consolidation tests. By using X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses, the effect of curing on UCS after 3, 7, 14, 28, 56, and 112 days was studied from the standpoint of microstructural changes. Also, the long-term strength development of treated soils was analyzed in terms of the interactive response of impacting factors with the assistance of a series of ANN-based sensitivity analyses. It is found from the results that the addition of MD and RHA lowered down the water holding capacity, thereby causing a reduction in soil plasticity (by 21% for MD and 14.5% for RHA) and optimum water content (by 2% for MD and increased by 6% for RHA) along with an increase in the UCS (for 8% MD from 97 kPa to 471 kPa and for 10% RHA from 211 kPa to 665 kPa, after 3 days and 112 days of curing, respectively). Moreover, from the oedometer test results, m v initially increased up to 6% dosage and then dropped with further increase in the preconsolidation pressure. Furthermore, the compression index dropped with an increase in the preconsolidation pressure and addition of MD/RHA, while the coefficient of permeability (k) of RHA stabilized soil was higher than that of MD-treated samples for almost all dosage levels. The formation of the fibrous cementitious compounds (C-S-H; C-A-H) increased at optimum additive dosage after 7 days and at higher curing periods. Hence, the use of 10% RHA and 12% MD as replacement of the expansive soil is recommended for higher efficacy. This research would be helpful in reducing the impacts created by the disposal of both expansive soil and industrial and agricultural waste materials.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Kennedy C. Onyelowe ◽  
Michael E. Onyia ◽  
Diu Nguyen-Thi ◽  
Duc Bui Van ◽  
Eze Onukwugha ◽  
...  

Volume change in expansive soils is a problem encountered in earth work around the world. This is prominent with hydraulically bound structures or foundations subjected to prolonged moisture exposure. This behavior of clayey used as subgrade, foundation, landfill, or backfill materials causes undesirable structural functionality and failures. To prevent this happening, clayey soils are studied for possible volume change potential and degree of expansion. Consequently, the problematic soils are stabilized. In this work, the stabilization of clayey highly expansive soil classified as A-7-6 soil and highly plastic with high clay content was conducted under laboratory conditions. The treatment exercise was experimented using quicklime-activated rice husk ash (QARHA), hydrated lime-activated rice husk ash (HARHA), and calcite-activated rice husk ash (CARHA) at the rates of 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, and 10%. Upon treatment with the three calcium compounds to produce three sets of treated experimental specimens, the plasticity index was observed and recorded and swelling potentials were evaluated using the plasticity index method (PIM). The results showed a consistent improvement on the properties of the treated soil with the addition of the different activated admixtures. While the utilization of CARHA and HARHA improved the clayey soil to medium expansive soil, the treated clayey soil substantially improved from highly expansive soil with a potential of 23.35% to less expansive with a final potential of 0.59% upon the addition of 10% QARHA. Finally, QARHA was adjudged as the best binding composite due to the highest rate of reduction recorded with its utilization.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Mazahir M. M. Taha ◽  
Cheng Pei Feng ◽  
Sara H. S. Ahmed

This study investigated the effects of polypropylene fibre (PF) reinforcement on the mechanical behaviour of clay soil. Using clay soil and polypropylene fibres from China’s Inner Mongolia and Hebei Provinces, respectively, a series of soil samples with 0%, 1.5%, 2.25%, and 3% PF content by soil weight were subjected to compaction, shear strength, consolidation, California bearing ratio, and microstructure analyses. The study results indicate improved compaction, shear strength, consolidation, and the bearing ratio of the PF-stabilised clay soil. As the PF content increased, its maximum dry density increased and its optimum moisture content decreased; its angle of internal friction increased and its cohesion coefficient decreased; and its void ratio, consolidation coefficient, and hydraulic conductivity all decreased. Comparing the unstabilised (0% PF) and stabilised (3% PF) clay soil, the void ratio, consolidation coefficient, and hydraulic conductivity decreased from 0.96 to 0.93, from 2.52 to 2.34 cm2/s, and from 1.12 to 1.02 cm/s, respectively. The optimum PF content was determined to be 3% by the weight of the soil, as this quantity resulted in the best improvement in soil properties.


2011 ◽  
Vol 367 ◽  
pp. 63-71 ◽  
Author(s):  
Adrian O. Eberemu ◽  
Agapitus A. Amadi ◽  
Joseph E. Edeh

Laboratory study on compacted tropical clay treated with up to 16% rice husk ash (RHA), an agro-industrial waste; to evaluate its hydraulic properties and hence its suitability in waste containment systems was carried out. Soil-RHA mixtures were compacted using standard Proctor, West African Standard and modified Proctor efforts at-2, 0, 2 and 4% of optimum moisture content (OMC). Compacted samples were permeated and the hydraulic behaviour of the material was examined considering the effects of moulding water content, water content relative to optimum, dry density and RHA contents. Results showed decreasing hydraulic conductivity with increasing moulding water content and compactive efforts; it also varied greatly between the dry and wet side of optimum decreasing towards the wet side. Hydraulic conductivity generally decreased with increased dry density for all effort. Hydraulic conductivity increased with rice husk ash treatment at the OMC; but were within recommended values of 1 x 10-7 cm/s for up to 8% rice husk ash treatment irrespective of the compactive effort used. This shows the suitability of the material as a hydraulic barrier in waste containment systems for up to 8% rice husk ash treatment and beneficial reuse of this agro-industrial waste product.


2019 ◽  
Vol 38 (2) ◽  
pp. 2027-2037
Author(s):  
Manoochehr Fathi-Moghaddam ◽  
Mohammad Tavakol-Sadrabadi ◽  
Mohammad Tajbakhsh

2015 ◽  
Vol 8 (2) ◽  
pp. 173-186 ◽  
Author(s):  
Mubashir Aziz ◽  
Masood Saleem ◽  
Muhammad Irfan

2020 ◽  
Vol 184 ◽  
pp. 01083
Author(s):  
Dr. Vanathi ◽  
Dr.K Radhika ◽  
Ms. G. Swetha

Permeable concrete is a special concrete which consists of cement, coarse aggregate and water. Due to rapid growth of globalization and urbanization, the construction of concrete roads increasing day by day which leads to decrease in percolation of storm water, surface runoff occurring to the decrease in ground water table. In previous concrete, single sized aggregate is used to maintain the void ratio in the concrete. The cement paste is bonded with aggregate with a void ratio of 20%. In this investigation, concrete of M20 grade with water cement ratio of 0.38 is used. The properties of concrete were increased by using Rice husk ash and Bagasse ash in changed percentages (10%, 20%, 30%) by weight of cement and with the combination of rice husk ash and bagasse ash 10% (5%RA + 5%BA), 20%(10%RA+10%BA), 30%(15%RA+15%BA) are used. The compressive strength of cubes, split tensile of cylinders are casted, tested after 7 days and 28 days. After testing, the optimum percentages of replacement of admixtures are found in the Permeable concrete. Therefore the strength and durability properties of permeable concrete with the addition of bagasse ash and rice husk ash with partial replacement of cement are compared with conventional concrete.


Sign in / Sign up

Export Citation Format

Share Document