scholarly journals One-Step Construction of Multi-Walled CNTs Loaded with Alpha-Fe2O3 Nanoparticles for Efficient Photocatalytic Properties

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2820
Author(s):  
Jianle Xu ◽  
Qiang Wen ◽  
Xiao Zhang ◽  
Yinhui Li ◽  
Zeyue Cui ◽  
...  

The aggregation and the rapid restructuring of the photoinduced electron−hole pairs restructuring in the process of photoelectric response remains a great challenge. In this study, a kind of Multi-walled carbon nanotubes loaded Alpha-Fe2O3 (CNTs/α-Fe2O3) heterostructure composite is successfully prepared via the one-step method. Due to the synergistic effect in the as-prepared CNTs/α-Fe2O3, the defect sites and oxygen-containing functional groups of CNTs can dramatically improve the interface charge separation efficiency and prevent the aggregation of α-Fe2O3. The improved photocurrent and enhanced hole–electron separation rate in the CNTs/α-Fe2O3 is obtained, and the narrower band gap is measured to be 2.8 ev with intensive visible-light absorption performance. Thus, the CNTs/α-Fe2O3 composite serves as an excellent visible light photocatalyst and exhibits an outstanding photocatalytic activity for the cationic dye degradation of rhodamine B (RhB). This research supplies a fresh application area forα-Fe2O3 photocatalyst and initiates a new approach for design of high efficiency photocatalytic materials.

Author(s):  
M. Shamshi Hassan

CoTiO3-TiO2 composite nanofibrous photocatalysts were synthesized by means of the one-step electrospinning method. The samples were characterized by a range of different methods (XRD, SEM, EPMA, FT-IR, UV-DRS, and TEM). Photocatalytic activity was performed for the degradation of rhodamine 6G under visible light. The results showed that CoTiO3-TiO2 composite photocatalysts were successfully synthesized. The average sizes of the diameters of the composite nanofibers were found to be 300 to 400 nm. The UV–Vis diffuse reflectance spectra of the CoTiO3-TiO2 composite showed an absorption wavelength, in the visible light region, having a band gap energy value of 2.21 eV. The CoTiO3-TiO2 composite showed higher photocatalytic efficiency than that of pristine TiO2; which can be attributed to the heterojunctional interaction between CoTiO3 and TiO2.


Author(s):  
M. Shamshi Hassan

CoTiO3-TiO2 composite nanofibrous photocatalysts were synthesized by means of the one-step electrospinning method. The samples were characterized by a range of different methods (XRD, SEM, EPMA, FT-IR, UV-DRS, and TEM). Photocatalytic activity was performed for the degradation of rhodamine 6G under visible light. The results showed that CoTiO3-TiO2 composite photocatalysts were successfully synthesized. The average sizes of the diameters of the composite nanofibers were found to be 300 to 400 nm. The UV–Vis diffuse reflectance spectra of the CoTiO3-TiO2 composite showed an absorption wavelength, in the visible light region, having a band gap energy value of 2.21 eV. The CoTiO3-TiO2 composite showed higher photocatalytic efficiency than that of pristine TiO2; which can be attributed to the heterojunctional interaction between CoTiO3 and TiO2.


Author(s):  
Chao Zhang ◽  
Baoquan Liu ◽  
Weiping Li ◽  
Xiangxue Liu ◽  
Ke Wang ◽  
...  

Well-designed honeycomb Co3O4@CdS (H-Co3O4@CdS) was fabricated via a one-step strategy for efficient water splitting. During the decoration of CdS, honeycomb Co3O4 (H-Co3O4) with macropore was formed simultaneously. H-Co3O4 could enhance...


Nanoscale ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 2871-2877 ◽  
Author(s):  
Ting Zhang ◽  
Feng Wang ◽  
Peng Zhang ◽  
Yafei Wang ◽  
Hao Chen ◽  
...  

The flexible perovskite photodetector, fabricated by a modified one-step method, showed a broadband spectrum response from blind ultraviolet to visible light, and exhibited excellent mechanical flexibility and improved environmental stability.


2020 ◽  
Vol 20 (9) ◽  
pp. 5426-5432
Author(s):  
G. Gnanamoorthy ◽  
M. Muthukumaran ◽  
P. Varun Prasath ◽  
V. Karthikeyan ◽  
V. Narayanan ◽  
...  

Photocatalysts provide excellent potential for the full removal of organic chemical pollutants as an environmentally friendly technology. It has been noted that under UV-visible light irradiation, nanostructured semiconductor metal oxides photocatalysts can degrade different organic pollutants. The Sn6SiO8/rGO nanocomposite was synthesized by a hydrothermal method. The Sn6SiO8 nanoparticles hexagonal phase was confirmed by XRD and functional groups were analyzed by FT-IR spectroscopy. The bandgap of Sn6SiO8 nanoparticles (NPs) and Sn6SiO8/GO composites were found to be 2.7 eV and 2.5 eV, respectively. SEM images of samples showed that the flakes like morphology. This Sn6SiO8/rGO nanocomposite was testing for photocatalytic dye degradation of MG under visible light illumination and excellent response for the catalysts. The enhancement of photocatalytic performance was mainly attributed to the increased light absorption, charge separation efficiency and specific surface area, proved by UV-vis DRS. Further, the radical trapping experiments revealed that holes (h+) and superoxide radicals (·O−2) were the main active species for the degradation of MG, and a possible photocatalytic mechanism was discussed.


1990 ◽  
Vol 9 (3) ◽  
pp. 247-252 ◽  
Author(s):  
Sander Greenland ◽  
Alberto Salvan
Keyword(s):  
One Step ◽  

2018 ◽  
Vol 54 (68) ◽  
pp. 9438-9441 ◽  
Author(s):  
Nathalie M. Pinkerton ◽  
Khadidja Hadri ◽  
Baptiste Amouroux ◽  
Leah Behar ◽  
Christophe Mingotaud ◽  
...  

A novel, one-step method for the synthesis of functional, organic–inorganic hybrid nanoparticles is reported.


Sign in / Sign up

Export Citation Format

Share Document