The impact of switching to the one-step method for GDM diagnosis on the rates of postpartum screening attendance and glucose disorder in women with prior GDM. The San Carlos Gestational Study

2016 ◽  
Vol 30 (7) ◽  
pp. 1360-1364 ◽  
Author(s):  
Carla Assaf-Balut ◽  
Elena Bordiú ◽  
Laura del Valle ◽  
Miriam Lara ◽  
Alejandra Duran ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yuan Zhao ◽  
Hongyi Li ◽  
Jiemin Liu

In this paper, we conduct a research based on the classified secondary users (SUs). SUs are divided into two categories: higher-priority SU1 and lower-priority SU2, and two types of users generate two types of packets, respectively. Due to the lowest spectrum usage rights of SU2 packets, the SU2 packets’ transmission is easily interrupted by other packets with higher rights. With the purpose of controlling the SU2 packets’ retransmission behavior, we introduce two system parameters, namely, feedback threshold T and feedback probability q. When the amount of SU2 packets in the buffer reaches the feedback threshold T, the interrupted SU2 packets either enter the buffer with probability q for retransmission or leave the channel by probability 1−q, where q is a fixed parameter. We construct a three-dimensional Markov model based on the presented retransmission control mechanism and derive some important performance indicators of SU2 packets based on the one-step transfer probability matrix and steady-state distribution. Then, we analyze the impact of some key parameters on the performance indicators through numerical experiments. Finally, we establish a cost function and use particle swarm optimization algorithm to optimize the feedback threshold and feedback probability.


2020 ◽  
Vol 10 (21) ◽  
pp. 7601
Author(s):  
Hyunho Shin ◽  
Sanghoon Kim ◽  
Jong-Bong Kim

To reveal the stress transfer mechanism of the flange in a split Hopkinson tension bar, explicit finite element analyses of the impact of the hollow striker on the flange were performed across a range of flange lengths. The tensile stress profiles monitored at the strain gauge position of the incident bar are interpreted on a qualitative basis using three types of stress waves: bar (B) waves, flange (F) waves, and a series of reverberation (Rn) waves. When the flange length (Lf) is long (i.e., Lf > Ls, where Ls is the striker length), the B wave and first reverberation wave (R1) are fully separated in the time axis. When the flange length is intermediate (~Db < Lf < Ls, where Db is the bar diameter), the B and F waves are partially superposed; the F wave is delayed, then followed by a series of Rn waves after the superposition period. When the flange length is short (Lf < ~Db), the B and F waves are practically fully superposed and form a pseudo-one-step pulse, indicating the necessity of a short flange length to achieve a neat tensile pulse. The magnitudes and periods of the monitored pulses are consistent with the analysis results using the one-dimensional impact theory, including a recently formulated equation for impact-induced stress when the areas of the striker and bar are different, equations for the reflection/transmission ratios of a stress wave, and an equation for pulse duration time. This observation verifies the flange length-dependent stress transfer mechanism on a quantitative basis.


1990 ◽  
Vol 9 (3) ◽  
pp. 247-252 ◽  
Author(s):  
Sander Greenland ◽  
Alberto Salvan
Keyword(s):  
One Step ◽  

2018 ◽  
Vol 54 (68) ◽  
pp. 9438-9441 ◽  
Author(s):  
Nathalie M. Pinkerton ◽  
Khadidja Hadri ◽  
Baptiste Amouroux ◽  
Leah Behar ◽  
Christophe Mingotaud ◽  
...  

A novel, one-step method for the synthesis of functional, organic–inorganic hybrid nanoparticles is reported.


Minerals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 658 ◽  
Author(s):  
Xiaohui Yang ◽  
Yi Liu ◽  
Chunjie Yan ◽  
Ronghua Peng ◽  
Hongquan Wang

Geopolymer-TiO2 nanocomposites were prepared by two different techniques, namely the two-step acidification calcination treatment and one-step adding method. The potential photocatalytic activities of geopolymer-TiO2 nanocomposites prepared by the two different methods were tested and compared. Nanocomposites prepared via the one-step process showed better photocatalytic activity. The amount of TiO2 particles loaded on the surface of the foaming materials was investigated by XRD and SEM-Mapping. By comparing with the sample obtained from two-step treatment, the TiO2 particles were distributed uniformly on the surface of the foaming materials for the sample obtained from the one-step method in this study. Results showed that the specific surface area of the geopolymer-TiO2 prepared by the one-step treatment process (28.67 m2/g) was significantly lower than the two-step acidification calcination process (215.04 m2/g), while the photocatalytic efficiency with methylene blue trihydrate (MB) was better. This is due to the more stable structure of geopolymer-TiO2 nanocomposites, the better dispersion and more loading of TiO2 particles on the foaming materials surfaces, leading to the enhanced photocatalytic activity.


Author(s):  
George W. Patrick ◽  
Charles Cuell ◽  
Raymond J. Spiteri ◽  
William Zhang

In the formalism of constrained mechanics, such as that which underlies the SHAKE and RATTLE methods of molecular dynamics, we present an algorithm to convert any one-step integration method to a variational integrator of the same order. The one-step method is arbitrary, and the conversion can be automated, resulting in a powerful and flexible approach to the generation of novel variational integrators.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7604
Author(s):  
Hasan Shabbir ◽  
Tomasz Tokarski ◽  
Ditta Ungor ◽  
Marek Wojnicki

In this work, we report the synthesis method of carbon quantum dots (CDs) using the one-step method for fast and effective metal ion determination. Ascorbic acid was used as an inexpensive and environmentally friendly precursor. High-pressure and high-temperature reactors were used for this purpose. Microscopic characterization revealed the size of CDs was in the range of 2–6 nm and they had an ordered structure. The photoluminescence properties of the CDs depend on the process temperature, and we obtained the highest PL spectra for 6 h of hydrothermal reaction. The maximum emission spectra depend poorly on synthesis time. Further characterization shows that CDs are a good contender for sensing Fe3+ in aqueous systems and can detect concentrations up to 0.49 ppm. The emission spectra efficiency was enhanced by up to 200% with synthesis time.


Sign in / Sign up

Export Citation Format

Share Document