scholarly journals Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3921
Author(s):  
Liangtao Bu ◽  
Guoqiang Du ◽  
Qi Hou

Recycled aggregate concrete (RAC), due to its high porosity and the residual cement and mortar on its surface, exhibits weaker strength than common concrete. To guarantee the safe use of RAC, a compressive strength prediction model based on artificial neural network (ANN) was built in this paper, which can be applied to predict the RAC compressive strength for 28 days. A data set containing 88 data points was obtained by relative tests with different mix proportion designs. The data set was used to develop an ANN, whose optimal structure was determined using the trial-and-error method by taking cement content (C), sand content (S), natural coarse aggregate content (NCA), recycled coarse aggregate content (RCA), water content (W), water–colloid ratio (WCR), sand content rate (SR), and replacement rate of recycled aggregate (RRCA) as input parameters. On the basis of different numbers of hidden layers, numbers of hidden layer neurons, and transfer functions, a total of 840 different back propagation neural network (BPNN) models were developed using MATLAB software, which were then sorted according to the correlation coefficient R2. In addition, the optimal BPNN structure was finally determined to be 8–12–8–1. For the training set, the correlation coefficient R2 = 0.97233 and RMSE = 2.01, and for the testing set, the correlation coefficient R2 = 0.96650 and RMSE = 2.42. The model prediction deviations of the two were both less than 15%, and the results show that the ANN achieved pretty accurate prediction on the compressive strength of RAC. Finally, a sensitivity analysis was carried out, through which the impact of the input parameters on the predicted compressive strength of the RAC was obtained.

2008 ◽  
Vol 385-387 ◽  
pp. 381-384 ◽  
Author(s):  
Wei Wang ◽  
Hua Ling ◽  
Xiao Ni Wang ◽  
Tian Xia ◽  
Da Zhi Wang ◽  
...  

With the increase in the use of recycled aggregate concrete (RAC), it is necessary to clearly understand its behavior and characteristics. In this paper, experimental study on compressive strength of RAC with same water/cement ratio is conducted. Firstly, influence of recycled coarse aggregate contents on cube compressive strength of RAC is studied. Secondly, experiment on time-dependent strength developing process of RAC is conducted with different solidification ages. Finally, based on above experimental investigations, empirical formula for compress strengths of RAC with different ages is presented. The result of this paper is helpful to theoretical analysis and practical engineering design of RAC structures.


2013 ◽  
Vol 377 ◽  
pp. 99-103 ◽  
Author(s):  
Hai Tao Yang ◽  
Shi Zhu Tian

Objective: Measure and study the mechanical properties and abrasion resistance of recycled aggregate concrete in order to provide experimental basis for the application of recycled aggregate concrete in engineering. Method: Use recycled aggregate concrete with replacement ratio of recycled coarse aggregate respectively for 0%, 30%, 50%, 80% and 100% to do the slump, compressive strength, modulus of elasticity and abrasion resistance tests on them. Result: The workability of concrete decreases with the increase of recycled coarse aggregate content. Mechanical properties of concrete change as the replacement ratios of recycled coarse aggregate change. Conclusion: The recycled aggregate concrete and natural aggregate concrete have similar abrasion resistance. The recycled aggregate concrete can be applied in engineering.


2021 ◽  
Vol 11 (22) ◽  
pp. 11077
Author(s):  
David Suescum-Morales ◽  
Lorenzo Salas-Morera ◽  
José Ramón Jiménez ◽  
Laura García-Hernández

Most regulations only allow the use of the coarse fraction of recycled concrete aggregate (RCA) for the manufacture of new concrete, although the heterogeneity of RCA makes it difficult to predict the compressive strength of concrete, which is an obstacle to the incorporation of RCA in concrete production. The compressive strength of recycled aggregate concrete is closely related to the dosage of its constituents. This article proposes a novel artificial neural network (ANN) model to predict the 28-day compressive strength of recycled aggregate concrete. The ANN used in this work has 11 neurons in the input layer: the mass of cement, fly ash, water, superplasticizer, fine natural aggregate, coarse natural or recycled aggregate, and their properties, such as: sand fineness modulus of sand, water absorption capacity, saturated surface dry density of the coarse aggregate mix and the maximum particle size. Two training methods were used for the ANN combining 15 and 20 hidden layers: Levenberg–Marquardt (LM) and Bayesian Regularization (BR). A database with 177 mixes selected from 15 studies incorporating RCA were selected, with the aim of having an underlying set of data heterogeneous enough to demonstrate the efficiency of the proposed approach, even when data are heterogeneous and noisy, which is the main finding of this work.


2019 ◽  
Vol 5 (3) ◽  
pp. 540 ◽  
Author(s):  
Abdulsamee M Halahla ◽  
Mohammad Akhtar ◽  
Amin H. Almasri

Demolishing concrete building usually produces huge amounts of remains and wastes worldwide that have promising possibilities to be utilized as coarse aggregate for new mixes of concrete. High numbers of structures around the world currently need to be removed for several reasons, such as reaching the end of the expected life, to be replaced by new investments, or were not built by the local and international standards. Maintaining or removal of such structures leads to large quantities of concrete ruins. Reusing these concrete wastes will help in saving landfill spaces in addition to more sustainability in natural resources. The objective of this study is to investigate the possibility of using old recycled concrete as coarse aggregate to make new concrete mixes, and its effect on the evolution of the compressive strength of the new concrete mixes.  Core samples for demolished concrete were tested to determine its compressive strength. The core test results can be thought of as aggregate properties for the new concrete. Then, the compressive strength and splitting tensile strength of the new recycled aggregate concrete (RAC) were determined experimentally by casting a cubes and cylinders, respectively. It was found that the evolution of compressive strength of recycled aggregate concrete is similar in behavior to the concrete with natural aggregate, except that it is about 10% lower in values. It was also seen that water absorption for recycled aggregate is noticeably higher than that for natural aggregate, and should be substituted for in the mix design.


2018 ◽  
Vol 21 (12) ◽  
pp. 1802-1814 ◽  
Author(s):  
Jun-Tao Li ◽  
Zong-Ping Chen ◽  
Jin-Jun Xu ◽  
Cheng-Gui Jing ◽  
Jian-Yang Xue

Concrete-filled steel tubular structural members can be recognized as an effective mean to improve the mechanical behavior in terms of strength, stiffness, ductility, and energy dissipation for the initial recycle aggregate concrete deficiencies compared with natural aggregate concrete. A small-scale model of square concrete-filled steel tubular column–reinforced concrete beam frame realized employing 100% recycled coarse aggregates was tested under combined axial loads and cyclic reversed lateral flexure. The failure modes, plastic hinges sequence, hysteresis loop, skeleton curve, stiffness degeneration, energy dissipation capacity, and ductility of the frame were presented and analyzed in detail. The structural behavior of square concrete-filled steel tubular column–reinforced concrete beam frame with 100% recycled coarse aggregates was compared with circular concrete-filled steel tubular column–reinforced concrete beam frame made with 100% recycled coarse aggregates. A fiber-based program model for the nonlinear analysis of concrete-filled steel tubular column–reinforced concrete beam frames incorporating recycled coarse aggregates was developed using SeismoStruct, to highlight the effect of recycled coarse aggregate content on mechanical behavior of recycled aggregate concrete and the confinement effect provided by outer tubes on core concrete. The analysis results show that the numerical model can well simulate and predict the seismic behavior of concrete-filled steel tubular column–reinforced concrete beam frames with 100% recycled coarse aggregate content. Both experimental and numerical results demonstrate that concrete-filled steel tubular column–reinforced concrete beam frames with large content of recycled coarse aggregates have a receivable seismic performance, and it is feasible to apply and popularize recycled aggregate concrete into concrete-filled steel tubular structures in seismic regions.


2013 ◽  
Vol 357-360 ◽  
pp. 1433-1436
Author(s):  
Zong Ping Chen ◽  
Chun Heng Zhou ◽  
Pei Huan Ye

Primary concrete of pebble coarse aggregate were used as the source of recycled aggregate concrete for pebble recycled coarse aggregate. Replacement rate of recycled aggregate for change parameter, 99 specimens were designed. The prism compressive strength, cube compressive strength and flexural strength were tested and achieved. The test results show that damage process and form of pebble coarse aggregate concrete are similar to those of normal concrete. It is gel adhesive failure between coarse aggregate and cement. Comparing with natural aggregate concrete, the strength indexes of recycled aggregate concrete of pebble coarse Aggregate slightly increase.


2012 ◽  
Vol 503-504 ◽  
pp. 1112-1115
Author(s):  
Fang Yu ◽  
Can Bin Yin ◽  
Min Jiang

Experimental work for the compressive strength of recycled aggregate concrete was designed. The results indicated that the recycled coarse aggregate (RCA) re-placement ratio has a remarkable influence on the compressive strength of recycled aggregate concrete.the relationships between the compressive strength and themw/mcratio are also different for differentRCA replacement ratios and the developments for the compressive strength of recycled aggregate concrete are not exactly the same as that of normal concrete.


Sign in / Sign up

Export Citation Format

Share Document