scholarly journals Recent Advancements in 3D Printing of Polysaccharide Hydrogels in Cartilage Tissue Engineering

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3977
Author(s):  
Jakob Naranda ◽  
Matej Bračič ◽  
Matjaž Vogrin ◽  
Uroš Maver

The application of hydrogels coupled with 3-dimensional (3D) printing technologies represents a modern concept in scaffold development in cartilage tissue engineering (CTE). Hydrogels based on natural biomaterials are extensively used for this purpose. This is mainly due to their excellent biocompatibility, inherent bioactivity, and special microstructure that supports tissue regeneration. The use of natural biomaterials, especially polysaccharides and proteins, represents an attractive strategy towards scaffold formation as they mimic the structure of extracellular matrix (ECM) and guide cell growth, proliferation, and phenotype preservation. Polysaccharide-based hydrogels, such as alginate, agarose, chitosan, cellulose, hyaluronan, and dextran, are distinctive scaffold materials with advantageous properties, low cytotoxicity, and tunable functionality. These superior properties can be further complemented with various proteins (e.g., collagen, gelatin, fibroin), forming novel base formulations termed “proteo-saccharides” to improve the scaffold’s physiological signaling and mechanical strength. This review highlights the significance of 3D bioprinted scaffolds of natural-based hydrogels used in CTE. Further, the printability and bioink formation of the proteo-saccharides-based hydrogels have also been discussed, including the possible clinical translation of such materials.

2014 ◽  
Vol 10 (1) ◽  
pp. 214-223 ◽  
Author(s):  
Peter A. Levett ◽  
Ferry P.W. Melchels ◽  
Karsten Schrobback ◽  
Dietmar W. Hutmacher ◽  
Jos Malda ◽  
...  

Biomaterials ◽  
2006 ◽  
Vol 27 (21) ◽  
pp. 3955-3963 ◽  
Author(s):  
Frank A. Müller ◽  
Lenka Müller ◽  
Ingo Hofmann ◽  
Peter Greil ◽  
Magdalene M. Wenzel ◽  
...  

Author(s):  
Hui Wang ◽  
Zhonghan Wang ◽  
He Liu ◽  
Jiaqi Liu ◽  
Ronghang Li ◽  
...  

Although there have been remarkable advances in cartilage tissue engineering, construction of irregularly shaped cartilage, including auricular, nasal, tracheal, and meniscus cartilages, remains challenging because of the difficulty in reproducing its precise structure and specific function. Among the advanced fabrication methods, three-dimensional (3D) printing technology offers great potential for achieving shape imitation and bionic performance in cartilage tissue engineering. This review discusses requirements for 3D printing of various irregularly shaped cartilage tissues, as well as selection of appropriate printing materials and seed cells. Current advances in 3D printing of irregularly shaped cartilage are also highlighted. Finally, developments in various types of cartilage tissue are described. This review is intended to provide guidance for future research in tissue engineering of irregularly shaped cartilage.


Author(s):  
Ming-You Shie ◽  
Wen-Ching Chang ◽  
Li-Ju Wei ◽  
Yu-Hsin Huang ◽  
Chien-Han Chen ◽  
...  

Diseases in articular cartilages have affected millions of people globally. Although the biochemical and cellular composition of articular cartilages is relatively simple, there is the limitation in self-repair ability of cartilage. Therefore, developing the strategies for cartilage repair is very important. Here, we reported a new manufacturing process of water-based polyurethane based photosensitive materials with hyaluronic acid and applied the materials for 3D printed customized cartilage scaffolds. The scaffold has high cytocompatibility and is one that closely mimics the mechanical properties of articular cartilages. It is suitable for culturing human Wharton's jelly mesenchymal stem cells (hWJMSCs) and the cells showed an excellent chondrogenic differentiation capacity. We consider that the 3D printing hybrid scaffolds may have potential in customized tissue engineering and facilitate the development of cartilage tissue engineering.


Osteology ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 149-174
Author(s):  
Naveen Jeyaraman ◽  
Gollahalli Shivashankar Prajwal ◽  
Madhan Jeyaraman ◽  
Sathish Muthu ◽  
Manish Khanna

The field of tissue engineering has revolutionized the world in organ and tissue regeneration. With the robust research among regenerative medicine experts and researchers, the plausibility of regenerating cartilage has come into the limelight. For cartilage tissue engineering, orthopedic surgeons and orthobiologists use the mesenchymal stromal cells (MSCs) of various origins along with the cytokines, growth factors, and scaffolds. The least utilized MSCs are of dental origin, which are the richest sources of stromal and progenitor cells. There is a paradigm shift towards the utilization of dental source MSCs in chondrogenesis and cartilage regeneration. Dental-derived MSCs possess similar phenotypes and genotypes like other sources of MSCs along with specific markers such as dentin matrix acidic phosphoprotein (DMP) -1, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and STRO-1. Concerning chondrogenicity, there is literature with marginal use of dental-derived MSCs. Various studies provide evidence for in-vitro and in-vivo chondrogenesis by dental-derived MSCs. With such evidence, clinical trials must be taken up to support or refute the evidence for regenerating cartilage tissues by dental-derived MSCs. This article highlights the significance of dental-derived MSCs for cartilage tissue regeneration.


RSC Advances ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 5999-6007 ◽  
Author(s):  
Narges Naseri ◽  
Jean-Michel Poirier ◽  
Lenart Girandon ◽  
Mirjam Fröhlich ◽  
Kristiina Oksman ◽  
...  

Fully bio-based 3D porous scaffold based on cellulose nanofibers with potential use in cartilage tissue engineering was developed.


Sign in / Sign up

Export Citation Format

Share Document