Novel High-Gain Circularly Polarized Lens Antenna Using Single-Layer Transmissive Metasurface

Frequenz ◽  
2017 ◽  
Vol 71 (5-6) ◽  
Author(s):  
Yaqiang Zhuang ◽  
Guangming Wang ◽  
Haipeng Li ◽  
Wenlong Guo

AbstractA high-gain lens antenna employing single-layer focusing metasurface (MS) is proposed in this article. The single-layer element achieves a 360° transmission phase range with a transmission magnitude better than 0.9. And the focusing MS consists of 169 elements was designed by utilizing the technique of varying rotation angle to compensate the phase delay. Thus, a lens antenna is constructed by placing a circularly polarized (CP) patch antenna at the focal point of the MS. The fabricated lens antenna demonstrates a good performance of 4.6 % 3-dB axial ratio bandwidth and 6 % 1-dB gain bandwidth, respectively. Moreover, the maximum gain is 18.3 dBic at 15 GHz, which is enhanced by 11.4 dBic compared with the patch antenna. Due to the single-layer structure, this design has a low profile and easy fabrication process compared with the conventional designs, making it an attractive alternative to compact high-gain antenna.




2021 ◽  
Vol 11 (19) ◽  
pp. 8869
Author(s):  
Manzoor Elahi ◽  
Son Trinh-Van ◽  
Youngoo Yang ◽  
Kang-Yoon Lee ◽  
Keum-Cheol Hwang

In this article, a high gain and compact 4 × 4 circularly polarized microstrip patch antenna array is reported for the data transmission of the next-generation small satellite. The radiating element of the circularly polarized antenna array is realized by the conventional model of the patch with truncated corners. A compact two-stage sequential rotational phase feeding is adopted that broadens the operating bandwidth of the 4 × 4 array. A small stub is embedded in the sequential rotational feed, which results in better performance in terms of the S-parameters and sequential phases at the output ports than sequential rotational feed without open stub. A prototype of the array is fabricated and measured. Fulfilling the application requirements of the next-generation small satellites, the array has the left-handed circularly polarized gain of more than 12 dBic with the axial ratio level below 1.5 dB in the ±10∘ angular space with respect to the broadside direction for the whole bandwidth from 8.05 GHz to 8.25 GHz. Moreover, the left-handed circularly polarized gain varies from 15 to 15.5 dBic in the desired band. The radiation patterns are measured; both the co- and X-pol are validated.



2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wei He ◽  
Yejun He ◽  
Long Zhang ◽  
Sai-Wai Wong ◽  
Wenting Li ◽  
...  

In this paper, a low-profile circularly polarized (CP) conical-beam antenna with a wide overlap bandwidth is presented. Such an antenna is constructed on the two sides of a square substrate. The antenna consists of a wideband monopolar patch antenna fed by a probe in the center and two sets of arc-hook-shaped branches. The monopolar patch antenna is loaded by a set of conductive shorting vias to achieve a wideband vertically polarized electric field. Two sets of arc-hook-shaped parasitic branches connected to the patch and ground plane can generate a horizontally polarized electric field. To further increase the bandwidth of the horizontally polarized electric field, two types of arc-hook-shaped branches with different sizes are used, which can generate another resonant frequency. When the parameters of the arc-hook-shaped branches are reasonably adjusted, a 90° phase difference can be generated between the vertically polarized electric field and the horizontally polarized electric field, so that the antenna can produce a wideband CP radiation pattern with a conical beam. The proposed antenna has a wide impedance bandwidth ( ∣ S 11 ∣ < − 10   dB ) of 35.6% (4.97-7.14 GHz) and a 3 dB axial ratio (AR) bandwidth at phi = 0 ° and theta = 35 ° of about 30.1% (4.97-6.73 GHz). Compared with the earlier reported conical-beam CP antennas, an important feature of the proposed antenna is that the AR bandwidth is completely included in the impedance bandwidth, that is, the overlap bandwidth of ∣ S 11 ∣ < − 10   dB and AR < 3   dB is 30.1%. Moreover, the stable omnidirectional conical-beam radiation patterns can be maintained within the whole operational bandwidth.







Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2071
Author(s):  
Bruno Ferreira-Gomes ◽  
Osvaldo N. Oliveira ◽  
Jorge Ricardo Mejía-Salazar

We report on the design of a low-profile integrated millimeter-wave antenna for efficient and broadband circularly polarized electromagnetic radiation. The designed antenna comprises a chiral dielectric metasurface built with a 2×2 arrangement of dielectric cylinders with slanted-slots at the center. A broadbeam high-gain with wide axial ratio (AR)<3 dB bandwidth was reached by pairing the electric and magnetic resonances of the dielectric cylinders and the slanted slots when excited by an elliptically polarized driven-patch antenna. This electric-magnetic pairing can be tuned by varying the cylinders diameter and the tilting and rotation angles of the slanted slots. The simulation results indicate impedance-matching bandwidths up to 22.6% (25.3–31.6 GHz) with 3-dB AR bandwidths of 11.6% (26.9–30.2 GHz), which in terms of compactness (0.95λ0×0.95λ0) and performance are superior to previous antenna designs. Since the simulations were performed by assuming materials and geometries easily implementable experimentally, it is hoped that circularly polarized antennas based on chiral metasurfaces can be integrated into 5G and satellite communications.





2018 ◽  
Vol 10 (7) ◽  
pp. 851-859 ◽  
Author(s):  
Qi Zheng ◽  
Chenjiang Guo ◽  
Jun Ding

AbstractIn this paper, a metasurface-based aperture-coupled circularly polarized (CP) antenna with wideband and high radiation gain is proposed and analyzed. The proposed antenna is comprised of coplanar waveguide coupling with 4 × 4 corner truncated square patches, which show compact size and low profile. The mechanism of the CP antenna is analyzed theoretically based on the mode analysis and equivalent circuit analysis. The parameters of feeding structure and truncated corner are studied and optimized to achieve wide impedance bandwidth (BW) and axial ratio (AR) BW. Finally, an overall size of 38.8 mm × 38.8 mm × 3.5 mm (0.71λ0 × 0.71λ0 × 0.064λ0 at 5.5 GHz) CP antenna is proposed and fabricated. The simulated results demonstrate that over 41.7% impedance BW (S11 < −10 dB) of 4.55–6.95 GHz and 3 dB AR BW of 5.05–6.15 GHz (fractional BW is about 19.6%) are achieved. In addition, the antenna yielded a broadside CP radiation with a high gain average about 7.5 dBic. Experimental results are in good agreement with the simulated ones.



Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4796
Author(s):  
Basem Aqlan ◽  
Mohamed Himdi ◽  
Hamsakutty Vettikalladi ◽  
Laurent Le-Coq

This communication presents a low-profile fully metallic high gain circularly polarized resonant cavity antenna, with a novel single-layer metasurface as superstrate operating at 300 GHz. The unit cell of the metallic metasurface layer consists of perforated grids of hexagonal and octagonal-shaped radiating apertures. The metasurface superstrate layer acts as a polarization convertor from linear-to-circular, which provides left-handed circularly polarized (LHCP) radiation. For simplicity and less design difficulty, a low cost laser cutting brass technology is proposed to design the antenna at sub-terahertz. The proposed circularly polarized resonant cavity antenna prototype has a low-profile planar metallic structure of volume 2.6λ0×2.6λ0×1.24λ0. Experimental results validate the design concept. The antenna yields a measured LHCP gain of 16.2 dBic with a directivity of 16.7 dBic at 302 GHz. This proposed circularly polarized resonant cavity antenna finds potential application in 6G sub-terahertz wireless communications.



Sign in / Sign up

Export Citation Format

Share Document