scholarly journals Evaluation of the Interfaces between Restorative and Regenerative Biomaterials Used in Vital Pulp Therapy

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5055
Author(s):  
Maria Teresa Xavier ◽  
Ana Luísa Costa ◽  
Francisco José Caramelo ◽  
Paulo Jorge Palma ◽  
João Carlos Ramos

Background: Calcium-silicate-based cements (CSC) have gained an increasing scientific and clinical relevance, enabling more conservative approaches, namely pulp preservation and regeneration therapies. This research aims to study the influence of four clinical variables on the interfaces between CSC and composite adhesive restoration, concerning shear bond strength (SBS) and ultra-morphological patterns. Methods: SBS tests were performed in 320 specimens divided in 16 groups (n = 20) according to: two CSC (NuSmile® NeoMTA, BiodentineTM); two adhesive systems (ClearfilTM SE Bond 2 (CSEB2), ClearfilTM Universal Bond Quick (CUBQ)); optional application of an additional hydrophobic bonding layer (HBL); two restoration times (immediate, seven days). Scanning electron microscopy (SEM) was performed to conduct the ultra-morphology interface analysis in 32 deciduous molars prepared and randomly allocated into the 16 groups. Results: Globally, SBS tests showed higher bond strength of CUBQ compared to CSEB2 (p < 0.001), as with an additional HBL application (p = 0.014) and delayed restoration (p < 0.001). SEM showed the interpenetration between adhesive systems and CSC forming a hybrid layer, whose depth and thickness depended on the restoration time and adhesive strategy. Conclusions: The independent clinical variables adhesive system, application of an additional HBL and restoration time affected the bond performance and ultra-morphological interface between composite adhesive restoration and CSC.

2014 ◽  
Vol 2 (3) ◽  
pp. 251
Author(s):  
Marcelo Totti ◽  
Marcelo Goulart ◽  
Laerte Ohse Fagundes ◽  
Thaís Thomé ◽  
Ewerton Nochi Conceição ◽  
...  

AIM: The objective of this study was to evaluate the use of MMPs inhibitors (chlorhexidine and EDTA) in bond strength and quality of the hybrid layer of adhesive restorations in normal dentin using two ethanol-based total-etch adhesive systems. MATERIAL AND METHODS: Thirty-two extracted human molars were coronally sectioned and randomly divided into 8 groups (n=4), depending on the surface pre-treatment and adhesive system used. The total-etch adhesive systems Single Bond 2 (2-step) and Adper Scotchbond Multi-Purpose Plus (3-step) were used as follows: 1) according to manufacturer's instructions (etching with 37% phosphoric acid (H3PO4) for 15 s); 2) etching with H3PO4 for 15 s, followed by 2% chlorhexidine for 120 s; 3) etching with 0.1 M EDTA for 60 s; 4) etching with 0.1 M EDTA followed by 2% chlorhexidine for 120 s. Teeth were incrementally restored with composite resin (Filtek Z350XT). After water storage for 24 h, teeth were double-sectioned, yielding stick specimens of 1.0 mm² bonded area, and then subjected to microtensile bond strength (MTBS) test at 0.5 mm/min. Additional specimens were gold-sputtered to be analyzed under scanning electron microscopy (SEM). Data (in Mega Pascal) were subjected to Kruskal-Wallis and Dunn (p <0.05) tests. RESULTS: The etching protocol (37% H3PO4 or EDTA) interfered with hybrid layer formation, monomer penetration and the MTBS. Funnel shaped resin tags were observed when dentin was etched with 37% H3PO4. In these specimens, MTBS were also higher. EDTA conditioning produced thin hybrid layers and smaller MTBS, regardless the adhesive system used. Chlorhexidine application after conditioning resulted in no apparent differences between both evaluated techniques (37% H3PO4 or EDTA). CONCLUSION: The use of chlorhexidine as a MMP inhibitor does not alter immediate bond strength values and does not interfere with hybrid layer formation.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
A. S. Bakry ◽  
M. A. Abbassy

Objectives. The aim of this study was to evaluate the shear bond strength and the nanoleakage expression of CLEARFIL Universal Bond Quick and Tetric N-Bond adhesive systems bonded to dentin. Materials and Methods. 100 freshly extracted human premolar teeth were utilized. The teeth were sectioned to expose dentin. All dentin specimens were assigned into 4 experimental groups; 2 groups had Universal Bond Quick (Universalself group) and Tetric N-Bond (Tetricself group) applied in the self-etch mode, while 2 groups had Universal Bond Quick (Universaltotal group) and Tetric N-Bond (Tetrictotal group) applied in the total-etch mode. n = 15 for shear bond strength and n = 10 for nanoleakage experiment. One-way ANOVA and Kruskal-Wallis test were utilized to analyze the shear bond strength test and the nanoleakage expression, respectively. Results. The highest significant bond strength value was recorded by the Tetricself specimens ( p < 0.05 ) when compared to the remaining three groups. There were no statistically significant differences between the shear bond strength values recorded in the Tetrictotal, Universalself, and Universaltotal groups ( p < 0.05 ). Both bonding systems applied in the self-etch mode (Universalself, Tetricself) had no silver nitrate deposits in the hybrid layer and the hybrid layer-adhesive interface ( p < 0.001 ); however, both bonding systems applied in the total-etch mode (Universaltotal, Tetrictotal) had silver nitrate deposits in the hybrid layer, the hybrid layer-adhesive interface, and the bonding layer ( p < 0.001 ). Conclusion. Applying the Universal Bond Quick and Tetric N-Bond in the self-etch mode exhibited better results in terms of nanoleakage expression. Universal Bond Quick showed the stability of the shear bond strength to dentin when applied using the total-etch or self-etch modes. Tetric N-Bond showed significant deterioration in bond strength when applied in the total-etch mode and exhibited the highest bond strength when applied in the self-etch mode.


2002 ◽  
Vol 16 (2) ◽  
pp. 115-120 ◽  
Author(s):  
César Augusto Galvão Arrais ◽  
Marcelo Giannini

The formation of a hybrid layer is the main bonding mechanism of current dentin-bonding systems. This study evaluated the morphology and thickness of the resin-infiltrated dentinal layer after the application of adhesive systems. The dentin-bonding agents were evaluated on flat dentinal preparations confected on the occlusal surfaces of human teeth. The test specimens were prepared and inspected under scanning electron microscopy at a magnification of X 2,000. The adhesive systems were responsible for different hybrid layer thicknesses (p < 0.05), and the mean values were: for Scotchbond MP Plus (SM), 7.41 ± 1.24mum; for Single Bond (SB), 5.55 ± 0.82mum; for Etch & Prime 3.0 (EP), 3.86 ± 1.17mum; and for Clearfil SE Bond (CB), 1.22 ± 0.45mum. The results suggest that the conventional three-step adhesive system (SM) was responsible for the thickest hybrid layer, followed by the one-bottle adhesive (SB). The self-etching adhesives, EP and CB, produced the formation of the thinnest hybrid layers.


2007 ◽  
Vol 31 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Carla Miranda ◽  
Luiz Henrique Maykot Prates ◽  
Ricardo de Souza Vieira ◽  
Maria Cristina Marino Calvo

The aims of this study were to evaluate the shear bond strength (SBS) of four adhesive systems applied to primary dentin and enamel and verify, after SBS testing, the failure mode of the adhesive interface. Sixty extracted sound primary molars were selected and crowns were sectioned in a mesial-distal direction. Specimens were randomly assigned into two groups (adhesion to enamel and adhesion to dentin) and then subdivided into four subgroups according to the adhesive system (n=15): Scotchbond Multi-Purpose (SMP) – Single Bond (SB) – Clearfil SE Bond (and Adper Prompt LPop (APL) – SBS tests were performed and the obtained values were statistically analyzed using ANOVA and Tukey tests (p&lt;0.05). The failure mode analysis was performed with a Scanning Electron Microscope (XL-30, Philips). SBS mean values on enamel were [MPa (SD)]: SMP – 27.89 (7.49); SB – 23.92 (8.8); CSB – 24.36 (6.69); APL – 25.96 (4.08); and on dentin: SMP – 17.29 (4.25); SB – 18.2 (8.74); CSB – 16.13 (7.14); APL – 6.04 (3.35). The predominant failure mode was cohesive (primarily of the bonding agent). On enamel SBS was statistically similar for all four adhesives. On dentin SBS of APL was lower than the other tested adhesives.


2014 ◽  
Vol 62 (4) ◽  
pp. 365-370 ◽  
Author(s):  
Ricardo Alves dos SANTOS ◽  
Eliane Alves de LIMA ◽  
Mônica Maria de Albuquerque PONTES ◽  
Alexandre Batista Lopes do NASCIMENTO ◽  
Marcos Antônio Japiassú Resende MONTES ◽  
...  

OBJECTIVE: To assess the bond strength to dentin of the Single Bond (3M ESPE) and XP Bond (Dentsply) total-etch and Adper SE Plus (3M ESPE) self-etch adhesive systems. METHODS: Fifteen healthy human third molars were randomly allocated across three different groups of five teeth each according to the adhesive system. The occlusal portion of each tooth was removed under refrigeration using a flexible diamond disc (EXTEC, Enfield, CT, USA) down to an area of dentin that did not reveal enamel, as confirmed under a 40X stereo microscope (Ramsor, São Paulo, Brazil). A standardized smear layer was created with #600 grit silicon-carbide paper. The adhesive systems were applied as per manufacturer recommendations, with the exception of the Adper SE Plus system, which was triple-polymerized. Composite resin blocks (5 mm) were placed on the dentin surface. The specimens were stored in distilled water for 24 hours at 37ºC. Using a flexible diamond disc (EXTEC, Enfield, CT, USA), toothpick-like specimens with an adhesive area of less than 1 mm² were obtained. A microtensile bond test was then carried out using a universal testing machine (KRATOS) with a crosshead speed of 0.5 mm/min. Analysis of variance (ANOVA) and Tukey's test were used for comparisons. RESULTS: The bond strength values obtained with each adhesive system were as follows: XP Bond, 96.24 MPa; Adper Single Bond, 72.39 MPa; Adper SE Plus, 49.91 MPa. CONCLUSION: In terms of bond strength to dentin, conventional adhesives outperform self-etching systems.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Mariana Almeida Mello Proença ◽  
Karime Tavares Lima da Silva ◽  
Alisson Costa e Silva ◽  
Edilausson Moreno Carvalho ◽  
José Bauer ◽  
...  

Objectives. The aim of this study was to evaluate the shear bond strength of metal brackets bonded with different universal adhesive systems containing 10-MDP and Transbond Plus Self Etching Primer after 20,000 thermal cycles. Materials and Methods. A total of 130 sound bovine teeth were used, which are divided into 5 groups (n = 26) according to the adhesive system used: All-Bond Universal (Bisco), Ambar Universal (FGM), Clearfil Universal Bond (Kuraray), Single Bond Universal (3M/ESPE), and Transbond Plus SEP (3M/ESPE) as control. The adhesives were applied for 20 seconds and bonded with a resin Transbond XT (3M/ESPE). After this, the teeth were submitted to 20,000 cycles at 5°C and 55°C. Afterwards, the shear bond strength test was performed in a universal test machine (Instron 3342). The adhesive remnant index (ARI) was evaluated under a stereomicroscope at 10x magnification and scanning electronic microscopy (SEM, Hitachi 3030). The shear bond strength data were submitted to One-Way ANOVA (α = 0.05) and the ARI to the Kruskal–Wallis test (α = 0.05). Results. Statistical analysis showed that the universal adhesive systems presented mean shear bond strength values similar to Transbond Plus SEP (p<0.05). The universal adhesive presented similar ARI values among them but differed from those of Transbond Plus SEP (p<0.001). Transbond Plus SEP presented a high ARI value when compared with the universal adhesive systems and high demineralization of enamel. Conclusions. The results show that universal adhesive systems may be used for bonding metal brackets if the orthodontist wants to maintain dental enamel health.


10.2341/05-20 ◽  
2006 ◽  
Vol 31 (2) ◽  
pp. 240-247 ◽  
Author(s):  
F. H. O. Mitsui ◽  
A. R. Peris ◽  
A. N. Cavalcanti ◽  
G. M. Marchi ◽  
L. A. F. Pimenta

Clinical Relevance Bond strength is affected by the combination of thermal and mechanical load cycling. However, results vary greatly with the number of mechanical cycles and adhesive system type (total or self-etching).


2012 ◽  
Vol 37 (1) ◽  
pp. 53-57 ◽  
Author(s):  
P Pereira Nogueira ◽  
V Cavalli ◽  
PCS Liporoni ◽  
MA do Rego

Objectives: The aim of the present study was to evaluate hybrid layer thickness of primary molars sectioned with diamond, carbide and ultrasonic CVD burs. Study Design: The occlusal enamel surfaces of ten molars were removed and superficial dentin was exposed. Three standardized cavities were prepared at mesial, central and distal exposed dentin with diamond, carbide and ultrasonic CVD burs, respectively. A self-etching adhesive system (Adhese, Ivoclar/Vivadent) was applied to prepared cavities and composite resin Z100 (3M/ESPE) was inserted according to manufacturers’ instructions to hybridized dentin. Samples were lightcured and the crown was sectioned mesio-distally dividing the restored cavities in two halves which were observed under scanning electron microscopy (SEM), in order to quantitatively evaluate hybrid layer thickness (µm). Three repeated measures were performed at mesial, central and distal sites and mean values obtained were submitted to one-way analysis of variance (ANOVA). Results: Data (mean ± sd) obtained were (µm): 2.69 (0.44), 3.38 (1.23) and 2.72 (1.18) for diamond, carbide and CVD burs, respectively. No differences were observed among groups (p ≯ 0.05). The adhesive systems promoted mechanical retention, uniform and continuous hybrid layer and resin tags formation at all dentin sites for all instruments tested. Conclusion: The results suggest that the minimally invasive cavities prepared with diamond, carbide and CVD for ultrasound, promoted hybrid layer formation with a similar thickness regardless the bur used.


2010 ◽  
Vol 35 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Hérica Adad Ricci ◽  
Mariane Emi Sanabe ◽  
Carlos Alberto de Souza Costa ◽  
Josimeri Hebling

Objective: The purpose of this study was to compare the immediate microtensile bond strength (µTBS) of two-step etch-and-rinse adhesive systems to the dentin of primary and permanent teeth. Study Design: Non-carious human teeth (12 primary molars and 12 premolars) were assigned to 3 groups according to the adhesive system. The adhesive systems were applied to flat superficial coronal dentin surfaces etched with phosphoric acid and composite resin blocks were built up. The teeth were sectioned to produce beam-shaped specimens with 0.81 mm2 cross-sectional area subjected to µTBS testing. µTBS data were analyzed statistically by ANOVA and Tukey’s test (a= 0.05). Results: The adhesive systems produced statistically similar mean µTBS to each other (p&gt;0.05) and no significant differences (p&gt;0.05) were found when the same material was applied to primary or permanent tooth dentin. The mean µTBS values (MPa) obtained were: Prime& Bond NT: 41.7±14.4 (permanent) and 40.8±13.4 (primary); Single Bond: 42.9±8.6 (permanent) and 41.4±11.9 (primary); Excite DSC: 46.3±11.3 (permanent teeth) and 43.4±12.0 (primary). Conclusion:There was no difference in the immediate µTBS of two-step etch-and-rinse adhesive systems when applied to the dentin of primary and permanent teeth.


2005 ◽  
Vol 16 (2) ◽  
pp. 107-111 ◽  
Author(s):  
Eduardo Batista Franco ◽  
Lawrence Gonzaga Lopes ◽  
Paulo Henrique Perlatti D'Alpino ◽  
José Carlos Pereira

The purpose of this study was to investigate the effect of pH of different adhesive systems on the polymerization of a chemically cured composite resin (Adaptic - AD), by means of tensile bond strength testing. The adhesive systems tested were: ARM, Prime & Bond 2.1 (PB), Scotchbond Multi Purpose (SMP) and Single Bond (SB). Bond strength at the resin/adhesive system/resin interface was assessed. Five groups (n=5) were formed, according to following configuration: G1: AD/ARM/AD; G2: AD/PB/AD; G3: AD/SMP/AD; G4: AD/SB/AD; G5: AD/AD (no adhesive). A two-mold stainless steel matrix with a cone-shaped opening (1-mm-thick; 4 mm in diameter) was used to obtain resin discs. AD resin was inserted into the first mold, left-self curing and an adhesive layer was applied onto resin surface and light-cured. The second mold was assembled over the first and was filled with the resin. After 10 min, this setting was loaded in tension in a universal testing machine running at a crosshead speed of 0.5 mm/min. Data were submitted to one-way ANOVA and Tukey's test (p<0.05). Bond strength means (kgf) were: G1: 15.23 ± 4.1; G2: 0.00 ± 0.0; G3: 16.96 ± 2.4; G4: 10.08 ± 2.7; G5: 15.44 ± 0.9. There were statistically significant differences (p<0.05) between G2-G1; G2-G3; G2-G4; G4-G1; G4-G3. The systems with the lowest pHs (PB and SB) yielded the lowest bond strength. The findings of this in vitro study demostrates that the pH of adhesive systems influences the polymerization and bond strength of chemically cured resin materials. The low pH simplified adhesive systems showed distinct degrees of incompatibility with the chemically cured resin, when compared to the conventional adhesive systems.


Sign in / Sign up

Export Citation Format

Share Document