scholarly journals An Upper Bound Solution for the Compression of an Orthotropic Cylinder

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5253
Author(s):  
Lihui Lang ◽  
Sergei Alexandrov ◽  
Yun-Che Wang

The upper bound theorem is used in conjunction with Hill’s quadratic yield criterion for determining the force required to upset a solid cylinder. The kinematically admissible velocity field accounts for the singular behavior of the real velocity field in the vicinity of the friction surface if the maximum friction law is adopted. The regime of sticking is also taken into consideration. The effect of this regime on the upper bound limit load is revealed. In particular, the kinematically admissible velocity field that includes the regime of sticking may result in a lower upper bound than that with no sticking. The boundary value problem is classified by a great number of geometric and material parameters. Therefore, a systematic parametric analysis of the effect of these parameters on the compression force is practically impossible. An advantage of the solution found is that it provides a quick estimate of this force for any given set of parameters.

2007 ◽  
Vol 345-346 ◽  
pp. 37-40 ◽  
Author(s):  
Gow Yi Tzou ◽  
Sergei Alexandrov

The choice of a kinematically admissible velocity field has a great effect on the predictive capacity of upper bound solutions. It is always advantageous, in addition to the formal requirements of the upper bound theorem, to select a class of velocity fields satisfying some additional conditions that follow from the exact formulation of the problem. In the case of maximum friction law, such an additional condition is that the real velocity field is singular in the vicinity of the friction surface. In the present paper this additional condition is incorporated in the class of kinematically admissible velocity fields chosen for a theoretical analysis of two - layer cylinders subject to compression and twist. An effect of the angular velocity of the die on process parameters is emphasized and discussed.


1970 ◽  
Vol 92 (1) ◽  
pp. 158-164 ◽  
Author(s):  
P. C. T. Chen

A method for selecting admissible velocity fields is presented for incompressible material. As illustrations, extrusion processes through three basic types of curved dies have been treated: cosine, elliptic, and hyperbolic. Upper-bound theorem is used in obtaining mean extrusion pressures and also in choosing the most suitable deformation pattern for extrusion through square dies. Effects of die geometry, friction, and material properties are discussed.


2006 ◽  
Vol 505-507 ◽  
pp. 1303-1308 ◽  
Author(s):  
Gow Yi Tzou ◽  
Sergei Alexandrov

An upper bound solution for axisymmetric upsetting of two-layer cylinder made of rigid perfectly plastic materials is provided. An important feature of the solution is that the kinematically admissible velocity field, in addition to the necessary requirements of the upper bound theorem, satisfies the frictional boundary condition in stresses, the maximum friction law. The latter is archived by introducing a singular velocity field such that the equivalent strain rate approaches infinity at the friction surface. The dependence of the upper bound limit load on geometric parameters and the ratio of the yield stresses of the two materials is analyzed. The solution can be used in industrial applications for evaluating the load required to deform two-layer cylinders.


2014 ◽  
Vol 797 ◽  
pp. 117-122 ◽  
Author(s):  
Carolina Bermudo ◽  
F. Martín ◽  
Lorenzo Sevilla

It has been established, in previous studies, the best adaptation and solution for the implementation of the modular model, being the current choice based on the minimization of the p/2k dimensionless relation obtained for each one of the model, analyzed under the same boundary conditions and efforts. Among the different cases covered, this paper shows the study for the optimal choice of the geometric distribution of zones. The Upper Bound Theorem (UBT) by its Triangular Rigid Zones (TRZ) consideration, under modular distribution, is applied to indentation processes. To extend the application of the model, cases of different thicknesses are considered


1991 ◽  
Vol 113 (4) ◽  
pp. 425-429 ◽  
Author(s):  
T. Hisatsune ◽  
T. Tabata ◽  
S. Masaki

Axisymmetric deformation of anisotropic porous materials caused by geometry of pores or by distribution of pores is analyzed. Two models of the materials are proposed: one consists of spherical cells each of which has a concentric ellipsoidal pore; and the other consists of ellipsoidal cells each of which has a concentric spherical pore. The velocity field in the matrix is assumed and the upper bound approach is attempted. Yield criteria are expressed as ellipses on the σm σ3 plane which are longer in longitudinal direction with increasing anisotropy and smaller with increasing volume fraction of the pore. Furthermore, the axes rotate about the origin at an angle α from the σm-axis, while the axis for isotropic porous materials is on the σm-axis.


Author(s):  
Carolina Bermudo Gamboa ◽  
Francisco De Sales Martín Fernández ◽  
Lorenzo Sevilla Hurtado

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhidan Liu ◽  
Jingwu Zhang ◽  
Weiping Chen ◽  
Di Wu

Based on the upper bound theorem of limit analysis, this paper presents a procedure for assessment of the influence of the soil anisotropy and nonhomogeneity on the stability of fissured slopes subjected to seismic action. By means of a mathematical optimization procedure written in Matlab software codes, the stability factors NS and λcφ are derived with respect to the best upper bound solutions. A series of stability charts are obtained in this paper, and then the critical locations of cracks are determined for cracks of known depth. The results demonstrate a significant influence of the soil anisotropy and nonhomogeneity on the stability of the fissured slopes and the location distribution of the cracks. In addition, the procedures for getting the factor of safety are put forward. It is shown that a decrease in the nonhomogeneity coefficient n0 and an increase in the anisotropy coefficient k could lead to the fissured slopes becoming unsafe. Finally, this article also illustrates the variation in the safety factor of fissured slopes under the impact of three factors (Kh, H1/H, and λ).


Mathematika ◽  
2007 ◽  
Vol 54 (1-2) ◽  
pp. 25-34
Author(s):  
Jürgen Eckhoff

Sign in / Sign up

Export Citation Format

Share Document