scholarly journals Potentiality of Nanoenzymes for Cancer Treatment and Other Diseases: Current Status and Future Challenges

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5965
Author(s):  
Rakesh K. Sindhu ◽  
Agnieszka Najda ◽  
Prabhjot Kaur ◽  
Muddaser Shah ◽  
Harmanpreet Singh ◽  
...  

Studies from past years have observed various enzymes that are artificial, which are issued to mimic naturally occurring enzymes based on their function and structure. The nanozymes possess nanomaterials that resemble natural enzymes and are considered an innovative class. This innovative class has achieved a brilliant response from various developments and researchers owing to this unique property. In this regard, numerous nanomaterials are inspected as natural enzyme mimics for multiple types of applications, such as imaging, water treatment, therapeutics, and sensing. Nanozymes have nanomaterial properties occurring with an inheritance that provides a single substitute and multiple platforms. Nanozymes can be controlled remotely via stimuli including heat, light, magnetic field, and ultrasound. Collectively, these all can be used to increase the therapeutic as well as diagnostic efficacies. These nanozymes have major biomedical applications including cancer therapy and diagnosis, medical diagnostics, and bio sensing. We summarized and emphasized the latest progress of nanozymes, including their biomedical mechanisms and applications involving synergistic and remote control nanozymes. Finally, we cover the challenges and limitations of further improving therapeutic applications and provide a future direction for using engineered nanozymes with enhanced biomedical and diagnostic applications.

2021 ◽  
pp. 389-426
Author(s):  
Azam Safary ◽  
Mostafa Akbarzadeh ◽  
Jaleh Barar ◽  
Yadollah Omidi

2013 ◽  
pp. 1-132 ◽  
Author(s):  
S. Rashdan ◽  
L. Selva Roselin ◽  
Rosilda Selvin ◽  
O.M. Lemine ◽  
Mohamed Bououdina

2021 ◽  
Author(s):  
A K M Rezaul Haque Chowdhury

Carbon nanomaterials have been explored for biomedical applications such as scaffolds in tissue engineering, drug delivery carriers, cancer diagnostics and biological imaging. Due to their possible cytotoxicity and biological inertness, they need biological or chemical functionalization to attain biomedical applications. Current research trends are for the synthesis of biocompatible and self-functionalized nanocarbon with prospective application in therapy and diagnosis. The main objectives of this thesis are to synthesize 3D self-functionalized biocompatible nanocarbon for therapeutic and diagnostic applications. The synthesis of the unique three-dimensional carbon nanostructures has been done with ultrashort femtosecond laser processing mechanism, a versatile yet precise technique for nanoscale material generation. First study deals with the synthesis of 3D nanocarbon network and its biocompatibility assessment. Quantitative and qualitative studies of the fibroblast cell response to this nano-network are performed. The findings from the in-vitro study indicate that the platform possesses excellent biocompatibility and promote cell adhesion and subsequent cell proliferation. In next study, the synthesized nanocarbon network (CNRN) platform that possesses a variation in C-C and C-O bond architecture showed dual functionality i. e. cytophilic to fibroblasts but cytotoxic to HeLa cells. Two distict opposite responses like tissue generation for fibroblasts and apoptosis like function for HeLa was observed after 48-hour of culture. The results have potentials or therapeutic appliations. Third study focuses on the diagnostic applications of the nanocarbon. A unique non-plasmonic SERS based bio-sensing platform using 3D nanocarbon is introduced for in-vitro detection and differentiation of HeLa and fibroblast cells. Time based Raman spectroscopy of these cells seeded on nanocarbon revealed chemical fingerprints of intracellular components like DNA/RNA, protein and lipids. Their spectroscopic differences guide differentiation of each cell. Finally, we have synthesized N-enriched nanocarbon probe through nitrogen incorporation-assisted ionization and demonstrate label free SERS based detection of transient variation of cell chemistry and thereby cancer cell diagnosis with N-enriched 3D nanocarbon probe. The results suggested that the SERS functionality not only reveal the chemical fingerprint of the intracellular components (e. g. protein, DNA, RNA etc.) within a cell but also guide detection of cancerous HeLa cells. The results obtained in this thesis point out multifunctional viability of biocompatible self-functionalized nanocarbons for therapy and diagnosis.


2021 ◽  
Author(s):  
A K M Rezaul Haque Chowdhury

Carbon nanomaterials have been explored for biomedical applications such as scaffolds in tissue engineering, drug delivery carriers, cancer diagnostics and biological imaging. Due to their possible cytotoxicity and biological inertness, they need biological or chemical functionalization to attain biomedical applications. Current research trends are for the synthesis of biocompatible and self-functionalized nanocarbon with prospective application in therapy and diagnosis. The main objectives of this thesis are to synthesize 3D self-functionalized biocompatible nanocarbon for therapeutic and diagnostic applications. The synthesis of the unique three-dimensional carbon nanostructures has been done with ultrashort femtosecond laser processing mechanism, a versatile yet precise technique for nanoscale material generation. First study deals with the synthesis of 3D nanocarbon network and its biocompatibility assessment. Quantitative and qualitative studies of the fibroblast cell response to this nano-network are performed. The findings from the in-vitro study indicate that the platform possesses excellent biocompatibility and promote cell adhesion and subsequent cell proliferation. In next study, the synthesized nanocarbon network (CNRN) platform that possesses a variation in C-C and C-O bond architecture showed dual functionality i. e. cytophilic to fibroblasts but cytotoxic to HeLa cells. Two distict opposite responses like tissue generation for fibroblasts and apoptosis like function for HeLa was observed after 48-hour of culture. The results have potentials or therapeutic appliations. Third study focuses on the diagnostic applications of the nanocarbon. A unique non-plasmonic SERS based bio-sensing platform using 3D nanocarbon is introduced for in-vitro detection and differentiation of HeLa and fibroblast cells. Time based Raman spectroscopy of these cells seeded on nanocarbon revealed chemical fingerprints of intracellular components like DNA/RNA, protein and lipids. Their spectroscopic differences guide differentiation of each cell. Finally, we have synthesized N-enriched nanocarbon probe through nitrogen incorporation-assisted ionization and demonstrate label free SERS based detection of transient variation of cell chemistry and thereby cancer cell diagnosis with N-enriched 3D nanocarbon probe. The results suggested that the SERS functionality not only reveal the chemical fingerprint of the intracellular components (e. g. protein, DNA, RNA etc.) within a cell but also guide detection of cancerous HeLa cells. The results obtained in this thesis point out multifunctional viability of biocompatible self-functionalized nanocarbons for therapy and diagnosis.


2021 ◽  
Author(s):  
A K M Rezaul Haque Chowdhury

Carbon nanomaterials have been explored for biomedical applications such as scaffolds in tissue engineering, drug delivery carriers, cancer diagnostics and biological imaging. Due to their possible cytotoxicity and biological inertness, they need biological or chemical functionalization to attain biomedical applications. Current research trends are for the synthesis of biocompatible and self-functionalized nanocarbon with prospective application in therapy and diagnosis. The main objectives of this thesis are to synthesize 3D self-functionalized biocompatible nanocarbon for therapeutic and diagnostic applications. The synthesis of the unique three-dimensional carbon nanostructures has been done with ultrashort femtosecond laser processing mechanism, a versatile yet precise technique for nanoscale material generation. First study deals with the synthesis of 3D nanocarbon network and its biocompatibility assessment. Quantitative and qualitative studies of the fibroblast cell response to this nano-network are performed. The findings from the in-vitro study indicate that the platform possesses excellent biocompatibility and promote cell adhesion and subsequent cell proliferation. In next study, the synthesized nanocarbon network (CNRN) platform that possesses a variation in C-C and C-O bond architecture showed dual functionality i. e. cytophilic to fibroblasts but cytotoxic to HeLa cells. Two distict opposite responses like tissue generation for fibroblasts and apoptosis like function for HeLa was observed after 48-hour of culture. The results have potentials for therapeutic appliations. Third study focuses on the diagnostic applications of the nanocarbon. A unique non-plasmonic SERS based bio-sensing platform using 3D nanocarbon is introduced for in-vitro detection and differentiation of HeLa and fibroblast cells. Time based Raman spectroscopy of these cells seeded on nanocarbon revealed chemical fingerprints of intracellular components like DNA/RNA, protein and lipids. Their spectroscopic differences guide differentiation of each cell. Finally, we have synthesized N-enriched nanocarbon probe through nitrogen incorporation-assisted ionization and demonstrate label free SERS based detection of transient variation of cell chemistry and thereby cancer cell diagnosis with N-enriched 3D nanocarbon probe. The results suggested that the SERS functionality not only reveal the chemical fingerprint of the intracellular components (e. g. protein, DNA, RNA etc.) within a cell but also guide detection of cancerous HeLa cells. The results obtained in this thesis point out multifunctional viability of biocompatible self-functionalized nanocarbons for therapy and diagnosis.


2021 ◽  
Author(s):  
A K M Rezaul Haque Chowdhury

Carbon nanomaterials have been explored for biomedical applications such as scaffolds in tissue engineering, drug delivery carriers, cancer diagnostics and biological imaging. Due to their possible cytotoxicity and biological inertness, they need biological or chemical functionalization to attain biomedical applications. Current research trends are for the synthesis of biocompatible and self-functionalized nanocarbon with prospective application in therapy and diagnosis. The main objectives of this thesis are to synthesize 3D self-functionalized biocompatible nanocarbon for therapeutic and diagnostic applications. The synthesis of the unique three-dimensional carbon nanostructures has been done with ultrashort femtosecond laser processing mechanism, a versatile yet precise technique for nanoscale material generation. First study deals with the synthesis of 3D nanocarbon network and its biocompatibility assessment. Quantitative and qualitative studies of the fibroblast cell response to this nano-network are performed. The findings from the in-vitro study indicate that the platform possesses excellent biocompatibility and promote cell adhesion and subsequent cell proliferation. In next study, the synthesized nanocarbon network (CNRN) platform that possesses a variation in C-C and C-O bond architecture showed dual functionality i. e. cytophilic to fibroblasts but cytotoxic to HeLa cells. Two distict opposite responses like tissue generation for fibroblasts and apoptosis like function for HeLa was observed after 48-hour of culture. The results have potentials for therapeutic appliations. Third study focuses on the diagnostic applications of the nanocarbon. A unique non-plasmonic SERS based bio-sensing platform using 3D nanocarbon is introduced for in-vitro detection and differentiation of HeLa and fibroblast cells. Time based Raman spectroscopy of these cells seeded on nanocarbon revealed chemical fingerprints of intracellular components like DNA/RNA, protein and lipids. Their spectroscopic differences guide differentiation of each cell. Finally, we have synthesized N-enriched nanocarbon probe through nitrogen incorporation-assisted ionization and demonstrate label free SERS based detection of transient variation of cell chemistry and thereby cancer cell diagnosis with N-enriched 3D nanocarbon probe. The results suggested that the SERS functionality not only reveal the chemical fingerprint of the intracellular components (e. g. protein, DNA, RNA etc.) within a cell but also guide detection of cancerous HeLa cells. The results obtained in this thesis point out multifunctional viability of biocompatible self-functionalized nanocarbons for therapy and diagnosis.


Author(s):  
Geetanjali Singh ◽  
Pramod Kumar Sharma ◽  
Rishabha Malviya

Aim/Objective: The author writes the manuscript by reviewing the literatures related to the biomedical application of metallic nanoparticles. The term metal nanoparticles are used to describe the nanosized metals with the dimension within the size range of 1-100 nm. Methods: The preparation of metallic nanoparticles and their application is an influential area for research. Among various physical and chemical methods (viz. chemical reduction, thermal decomposition, etc.) for synthesizing silver nanoparticles, biological methods have been suggested as possible eco-friendly alternatives. The synthesis of metallic nanoparticles is having many problems inclusive of solvent toxicity, the formation of hazardous byproducts and consumption of energy. So it is important to design eco-friendly benign procedures for the synthesis of metallic nanoparticles. Results: From the literature survey, we concluded that metallic nanoparticles have applications in the treatment of different diseases. Metallic nanoparticles are having a great advantage in the detection of cancer, diagnosis, and therapy. And it can also have properties such as antifungal, antibacterial, anti-inflammatory, antiviral and anti-angiogenic. Conclusion: In this review, recent upcoming advancement of biomedical application of nanotechnology and their future challenges has been discussed.


Sign in / Sign up

Export Citation Format

Share Document