scholarly journals Half Metallic Ferromagnetism and Transport Properties of Zinc Chalcogenides ZnX2Se4 (X = Ti, V, Cr) for Spintronic Applications

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 55
Author(s):  
Mohsen Al-Qhtani ◽  
Ghulam M. Mustafa ◽  
Nasheeta Mazhar ◽  
Sonia Bouzgarrou ◽  
Qasim Mahmood ◽  
...  

In ferromagnetic semiconductors, the coupling of magnetic ordering with semiconductor character accelerates the quantum computing. The structural stability, Curie temperature (Tc), spin polarization, half magnetic ferromagnetism and transport properties of ZnX2Se4 (X = Ti, V, Cr) chalcogenides for spintronic and thermoelectric applications are studied here by density functional theory (DFT). The highest value of Tc is perceived for ZnCr2Se4. The band structures in both spin channels confirmed half metallic ferromagnetic behavior, which is approved by integer magnetic moments (2, 3, 4) μB of Ti, V and Cr based spinels. The HM behavior is further measured by computing crystal field energy ΔEcrystal, exchange energies Δx(d), Δx (pd) and exchange constants (Noα and Noβ). The thermoelectric properties are addressed in terms of electrical conductivity, thermal conductivity, Seebeck coefficient and power factor in within a temperature range 0–400 K. The positive Seebeck coefficient shows p-type character and the PF is highest for ZnTi2Se4 (1.2 × 1011 W/mK2) among studied compounds.

2016 ◽  
Vol 34 (4) ◽  
pp. 905-915 ◽  
Author(s):  
M. Rahmoune ◽  
A. Chahed ◽  
A. Amar ◽  
H. Rozale ◽  
A. Lakdja ◽  
...  

AbstractIn this work, first-principles calculations of the structural, electronic and magnetic properties of Heusler alloys CoMnYAl, CoMnYGa and CoMnYIn are presented. The full potential linearized augmented plane waves (FP-LAPW) method based on the density functional theory (DFT) has been applied. The structural results showed that CoMnYZ (Z = Al, Ga, In) compounds in the stable structure of type 1+FM were true half-metallic (HM) ferromagnets. The minority (half-metallic) band gaps were found to be 0.51 (0.158), 0.59 (0.294), and 0.54 (0.195) eV for Z = Al, Ga, and In, respectively. The characteristics of energy bands and origin of minority band gaps were also studied. In addition, the effect of volumetric and tetragonal strain on HM character was studied. We also investigated the structural, electronic and magnetic properties of the doped Heusler alloys CoMnYGa1−xAlx, CoMnYAl1−xInx and CoMnYGa1−xInx (x = 0, 0.25, 0.5, 0.75, 1). The composition dependence of the lattice parameters obeys Vegard’s law. All alloy compositions exhibit HM ferromagnetic behavior with a high Curie temperature (TC).


2017 ◽  
Vol 31 (14) ◽  
pp. 1750109 ◽  
Author(s):  
Heidar Khosravi ◽  
Arash Boochani ◽  
Golnaz Rasolian ◽  
Shahram Solaymani ◽  
Sirvan Naderi

First-principles study of elastic, electronic and optical properties of full-Heusler Co2V(Al, Ge, Ga and Si) compounds are calculated through density functional theory (DFT) to obtain and compare the mentioned properties. Equilibrium lattice constants of these compounds are in good agreement with other works. Electronic calculations are shown full spin polarization at Fermi level for all compounds, so in the down spin, indirect bandgap is calculated as 0.33, 0.6, 0.2 and 0.8 eV for Co2V(Al, Ge, Ga and Si), respectively. The integer amounts of the magnetic moments are compatible with Slater–Pauling role. The optical treatment of Co2VGa is different from three other compounds. All mentioned compounds have metallic behavior by 22 eV plasmonic frequency. The imaginary part of the dielectric function for the up spin indicates that the main optical transitions occurred in this spin mode. Moreover, the elastic results show that the Co2VGa does not have elastic stability, but the other three compounds have fully elastic stability and the Co2V(Al, Ge and Si) belong to the hardness of materials.


Author(s):  
Y. Bouldiab ◽  
S. terkhi ◽  
Z. Aziz ◽  
F. Bendahma ◽  
M. A. Bennani ◽  
...  

In this work, the first-principles density functional calculations of the structural, elastic, electronic, magnetic, thermal and thermoelectric properties of NiVSn half-Heusler compound are carried out. The exchange and correlation potential are treated by using Generalized Gradient approximation of Perdew, Burke and Ernzerhof (GGA-PBE), GGA plus Tran–Blaha-modified Becke–Johnson (mBJ-GGA) approach and mBJ-GGA+U where U is the Hubbard on-site Coulomb interaction correction (mBJ-GGA+U). Structural calculations revealed that NiVSn is stable in type 1 structure ferromagnetic state. Elastic properties show that our compound is mechanically stable, ductile and anisotropic. The results of the band structures and density of states display a half metallic behavior of NiVSn with an indirect bandgap of 0.476, 0.508 and 0.845 eV by using GGA-PBE, mBJ-GGA, and mBJ-GGA+U, respectively. The total magnetic moment calculated is integer of 1 [Formula: see text]B confirming a half metallic behavior of NiVSn and follows the well-known Slater–Pauling rule ([Formula: see text]); therefore, the studied compound is suitable for application in spintronic fields. The thermodynamic properties such as bulk modulus, the heat capacity, the Debye temperature, and the thermal expansion coefficient are investigated using quasi-harmonic Debye model (QHDM). The thermal results show that NiVSn can be applied in extreme temperature and pressure conditions. The thermoelectric properties are studied employing the BoltzTrap code. The calculated transport properties are very interesting for the spin-down channel with high electrical conductivity, high Seebeck coefficient, and figure of merit value approaching unity. As a result, the half-Heusler alloy NiVSn is a promoter for conventional thermoelectric materials.


2012 ◽  
Vol 26 (18) ◽  
pp. 1250114
Author(s):  
ZHI-WEI ZHAO ◽  
JING WANG ◽  
HUI-YAN ZHAO ◽  
YING LIU

The structural and magnetic properties of M Si 46 (M = Mn , Fe , Co and Ni ) clathrates have been studied using density functional theory calculations within the generalized gradient approximation. When the structures involve a dopant at the center of a Si 20 or Si 24 cage, the results show that the neighboring atoms around the dopant are drawn in toward the center. Some of the silicon clathrates with a Mn or Co dopant at the center site of a Si 20 cage, or a Mn , Fe or Ni dopant at the center site of a Si 24 cage are found to be half-metallic materials with large magnetic moments, and others with a Fe or Ni dopant at the center site of a Si 20 cage or a Co dopant at the center site of a Si 24 cage display semi-metallic characters. In particular, MnSi 46 with a half-metallic gap of 0.70 eV and a magnetic moment of 5.00 μ B shows promise for applications in the field of spintronics.


2014 ◽  
Vol 28 (13) ◽  
pp. 1450104 ◽  
Author(s):  
M. Sajjad ◽  
H. X. Zhang ◽  
N. A. Noor ◽  
S. M. Alay-e-Abbas ◽  
M. Abid ◽  
...  

In this study, we examine the structural, electronic, magnetic and bonding properties of zincblende phase Zn 1-x V x Te (x = 0.0625, 0.125, 0.25) compounds to present them as suitable candidates for spintronic applications. Density functional theory calculations have been used by implementing the accurate full-potential linear-augmented-planewave plus local-orbital method. Structural properties have been computed using Wu–Cohen generalized gradient approximation, whereas the modified Becke and Johnson local (spin) density approximation (mBJLDA) function has been employed for the evaluating ground state electronic properties and ferromagnetic behavior. The half-metallic (HM) ferromagnetism in Zn 1-x V x Te is analyzed in terms of V -3d states and it is shown that mBJLDA predicts wide HM gaps which promise the possibility of achieving V -doped ZnTe with high Curie temperature. The spin exchange splittings Δx(d) and Δx(pd) have been estimated and the contribution of conduction band (CB) and valence band (VB) in exchange splitting is calculated in terms of the exchange constants N0α and N0β. Furthermore, spin-polarized charge density calculation is presented for elucidating the bonding nature, while pressure dependence of total magnetic moment for three concentrations of V -doped ZnTe is also discussed.


2015 ◽  
Vol 29 (02) ◽  
pp. 1450262 ◽  
Author(s):  
M. Afshar ◽  
H. Doosti

In this paper, we have demonstrated magnetic ordering of single cobalt layer added on graphene using relativistic density functional theory at the level of generalized gradient approximation. We have shown that the single Co layer added on graphene show ferromagnetic ordering with perpendicular alignment to the graphene sheet. In the presence of spin-orbit coupling, a spin-polarization degree of about 92% was found for this quasi-two-dimensional magnetic system where it is shown a nearly half-metallic feature.


2012 ◽  
Vol 229-231 ◽  
pp. 130-133 ◽  
Author(s):  
Bo Wu ◽  
Yu Feng ◽  
Hong Kuan Yuan ◽  
Hong Chen

Using the ab-initio calculations within the density functional theory (DFT), we have investigated the electronic structure, magnetism and half-metallic stability of Si-doped Heusler compound Ti2CoGa with Hg2CuTi-type structure. The results revel that the lattice constants and total magnetic moments in per unit obey the Vegard’s rule and the Slater-Pauling rule well, respectively. The most stable half-metallicity occurs at doping concentration x=0.75 because the Fermi level is located at the middle of the spin-minority gap. Our studies also indicate that the competition between RKKY-type indirect exchange and direct hybridization of d-electronic atoms plays a dominating role in determining the magnetism.


2010 ◽  
Vol 24 (08) ◽  
pp. 967-978 ◽  
Author(s):  
JINGSHAN QI ◽  
HAILIN YU ◽  
XUEFAN JIANG ◽  
DANING SHI

We present a comprehensive investigation of the equilibrium structural, electronic and magnetic properties of C o2 MnSi and C o2 FeSi by density-functional theory (DFT) within the generalized gradient approximation (GGA) using the projected augmented wave (PAW) method. The on-site Coulomb interaction has also taken into account ( GGA +U) approach to unravel the correlation effects on the electronic structure. The change of the energy gap, "spin gap", Fermi energy level and magnetic moments with the lattice parameters is investigated. We found that the on-site correlation interaction in C o2 FeSi is stronger than in C o2 MnSi . So on-site electronic correlation is necessary for C o2 FeSi and the magnetic moments reproduce experimental results well by GGA +U. Further we also found that a moderate change of the lattice parameters does not change the half-metallic ferromagnet (HMF) behavior for both materials. Appearance of half-metallicity is consistent with the integral magnetic moments, which also agrees with the experiment measurements.


2021 ◽  
Vol 7 ◽  
Author(s):  
Junquan Deng ◽  
Wuqing Yang ◽  
Aiyuan Hu ◽  
Peng Yu ◽  
Yuting Cui ◽  
...  

New diluted magnetic semiconductors represented by Li(Zn,Mn)As with decoupled charge and spin doping have received much attention due to their potential applications for spintronics. However, their low Curie temperature seriously restricts the wide application of these spintronic devices. In this work, the electronic structures, ferromagnetic properties, formation energy, and Curie temperature of Cu doped LiMgN and the corresponding Li deficient system are calculated by using the first principles method based on density functional theory, combined with Heisenberg model in the Mean-Field Approximation. We find that the Cu doped systems have high temperature ferromagnetism, and the highest Curie temperature is up to 573K, much higher than the room temperature. Li(Mg0.875Cu0.125)N is a half metallic ferromagnet and its net magnetic moments are 2.0 μв. When Li is deficient, the half metallic ferromagnetism becomes stronger, the magnetic moments increase to 3.0 μв. The bonding and differential charge density indicate that the half metallic ferromagnetism can be mainly attributed to the strong hybridization between N 2p and doped Cu 3d orbitals. The results show that Cu doped LiMgN is a kind of ideal new dilute magnetic semiconductor that will benefit potential spintronics applications.


2021 ◽  
Vol 317 ◽  
pp. 543-548
Author(s):  
Abdullah Chik ◽  
Ruhiyuddin Mohd Zaki ◽  
Akeem Adekunle Adewale ◽  
Faizul Che Pa ◽  
Yeoh Chow Keat

The search for clean energy conversion technologies promotes the study of thermoelectric materials. In this paper, the electronic structure and thermoelectric properties of CaMnO3 doped with 17% V using first principles calculations and semi-classic Boltzmann theory on Ca site as well as Mn sites. The G-type AFM magnetic ordering is most stable among four types of magnetic ordering for CaMnO3 and V doped CaMnO3 a Mn site while FM ordering was found for V doped CaMnO3 at Ca site. The calculated partial density of states plot shows half metallic and metallic behavior for V doped at A site and B site respectively. Thermoelectric property calculations show that the magnitude of Seebeck coefficient decreased with V doping at both sites with V doping at Mn sites has the lowest magnitude of Seebeck coefficient. All samples show the negative Seebeck coefficient indicating n type behavior. The magnitude of conductivity increases with V doping with the highest magnitude belong to V doped at Mn site. The magnitude of thermal conductivity also increased with V doping at Mn site, but shows a reduction for V doping at Ca site. The figure of merit (ZT) for V doping at Ca site shows a significant improvement over intrinsic CaMnO3 at 0.14 at 1000 K. However, V doping at Mn site sample shows a reduction of ZT at 0.0028 for CaMnO3 at 1000 K which is much lower than CaMnO3 at 0.08.


Sign in / Sign up

Export Citation Format

Share Document