scholarly journals Mode Coupling at around M-Point in PZT

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 79
Author(s):  
Sergey Vakhrushev ◽  
Alexey Filimonov ◽  
Konstantin Petroukhno ◽  
Andrey Rudskoy ◽  
Stanislav Udovenko ◽  
...  

The question of the microscopic origin of the M-superstructure and additional satellite peaks in the Zr-rich lead zirconate-titanate is discussed for nearly 50 years. Clear contradiction between the selection rules of the critical scattering and the superstructure was found preventing unambiguous attributing of the observed superstructure either to the rotation of the oxygen octahedra or to the antiparallel displacements of the lead cations. Detailed analysis of the satellite pattern explained it as the result of the incommensurate phase transition rather than antiphase domains. Critical dynamics is the key point for the formulated problems. Recently, the oxygen tilt soft mode in the PbZr0.976Ti0.024O3 (PZT2.4) was found. But this does not resolve the extinction rules contradiction. The results of the inelastic X-ray scattering study of the phonon spectra of PZT2.4 around M-point are reported. Strong coupling between the lead and oxygen modes resulting in mode anticrossing and creation of the wide flat part in the lowest phonon dispersion curves is identified. This flat part corresponds to the mixture of the displacements of the lead and oxygen ions and can be an explanation of the extinction rules contradiction. Moreover, a flat dispersion surface is a typical prerequisite for the incommensurate phase transition.

2012 ◽  
Vol 369 (1) ◽  
pp. 184-192 ◽  
Author(s):  
Tomasz M. Stawski ◽  
Rogier Besselink ◽  
Sjoerd A. Veldhuis ◽  
Hessel L. Castricum ◽  
Dave H.A. Blank ◽  
...  

2014 ◽  
Vol 90 (14) ◽  
Author(s):  
V. Kovacova ◽  
N. Vaxelaire ◽  
G. Le Rhun ◽  
P. Gergaud ◽  
T. Schmitz-Kempen ◽  
...  

2005 ◽  
Vol 475-479 ◽  
pp. 1193-1196
Author(s):  
Long Jie Zhou ◽  
Georg Rixecker ◽  
André Zimmermann ◽  
Fritz Aldinger

Bipolar electric fatigue in antiferroelectrics of the lead zirconate titanate stannate ceramics family was investigated. Variations in strain hysteresis loops and damages in microstructure of the materials due to the electric cycling were analyzed. The materials showed symmetric or asymmetric suppression of strain hysteresis loop, normal or diffuse AFE-FE phase transition and intact or damaged microstructure after 5×10-7 cycles, indicating a strong composition dependent fatigue effect and the corresponding mechanism. In general, the antiferroelectric materials exhibited much higher fatigue resistance than ferroelectric ceramics reported previously.


Sign in / Sign up

Export Citation Format

Share Document