scholarly journals An Effective Dynamic Path Planning Approach for Mobile Robots Based on Ant Colony Fusion Dynamic Windows

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 50
Author(s):  
Liwei Yang ◽  
Lixia Fu ◽  
Ping Li ◽  
Jianlin Mao ◽  
Ning Guo

To further improve the path planning of the mobile robot in complex dynamic environments, this paper proposes an enhanced hybrid algorithm by considering the excellent search capability of the ant colony optimization (ACO) for global paths and the advantages of the dynamic window approach (DWA) for local obstacle avoidance. Firstly, we establish a new dynamic environment model based on the motion characteristics of the obstacles. Secondly, we improve the traditional ACO from the pheromone update and heuristic function and then design a strategy to solve the deadlock problem. Considering the actual path requirements of the robot, a new path smoothing method is present. Finally, the robot modeled by DWA obtains navigation information from the global path, and we enhance its trajectory tracking capability and dynamic obstacle avoidance capability by improving the evaluation function. The simulation and experimental results show that our algorithm improves the robot's navigation capability, search capability, and dynamic obstacle avoidance capability in unknown and complex dynamic environments.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jianjun Ni ◽  
Wenbo Wu ◽  
Jinrong Shen ◽  
Xinnan Fan

Robot path planning in unknown and dynamic environments is one of the hot topics in the field of robot control. The virtual force field (VFF) is an efficient path planning method for robot. However, there are some shortcomings of the traditional VFF based methods, such as the local minimum problem and the higher computational complexity, in dealing with the dynamic obstacle avoidance. In this paper, an improved VFF approach is proposed for the real-time robot path planning, where the environment is unknown and changing. An area ratio parameter is introduced into the proposed VFF based approach, where the size of the robot and obstacles are considered. Furthermore, a fuzzy control module is added, to deal with the problem of obstacle avoidance in dynamic environments, by adjusting the rotation angle of the robot. Finally, some simulation experiments are carried out to validate and demonstrate the efficiency of the proposed approach.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ni Xiong ◽  
Xinzhi Zhou ◽  
Xiuqing Yang ◽  
Yong Xiang ◽  
Junyong Ma

This article aims to improve the problem of slow convergence speed, poor global search ability, and unknown time-varying dynamic obstacles in the path planning of ant colony optimization in dynamic environment. An improved ant colony optimization algorithm using time taboo strategy is proposed, namely, time taboo ant colony optimization (TTACO), which uses adaptive initial pheromone distribution, rollback strategy, and pheromone preferential limited update to improve the algorithm's convergence speed and global search ability. For the poor global search ability of the algorithm and the unknown time-varying problem of dynamic obstacles in a dynamic environment, a time taboo strategy is first proposed, based on which a three-step arbitration method is put forward to improve its weakness in global search. For the unknown time-varying dynamic obstacles, an occupancy grid prediction model is proposed based on the time taboo strategy to solve the problem of dynamic obstacle avoidance. In order to improve the algorithm's calculation speed when avoiding obstacles, an ant colony information inheritance mechanism is established. Finally, the algorithm is used to conduct dynamic simulation experiments in a simulated factory environment and is compared with other similar algorithms. The experimental results show that the TTACO can obtain a better path and accelerate the convergence speed of the algorithm in a static environment and can successfully avoid dynamic obstacles in a dynamic environment.


Robotica ◽  
2009 ◽  
Vol 28 (6) ◽  
pp. 833-846 ◽  
Author(s):  
Yuan Mingxin ◽  
Wang Sun'an ◽  
Wu Canyang ◽  
Li Kunpeng

SUMMARYInspired by the mechanisms of idiotypic network hypothesis and ant finding food, a hybrid ant colony and immune network algorithm (AC-INA) for motion planning is presented. Taking the environment surrounding the robot and robot action as antigen and antibody respectively, an artificial immune network is constructed through the stimulation and suppression between the antigen and antibody, and the antibody network is searched using improved ant colony algorithm (ACA) with pseudo- random-proportional rule and super excellent ant colony optimization strategy. To further accelerate the convergence speed of AC-INA and realize the optimal dynamic obstacle avoidance, an improved adaptive artificial potential field (AAPF) method is provided by constructing new repulsive potential field on the basis of the relative position and velocity between the robot and obstacle. Taking the planning results of AAPF method as the prior knowledge, the initial instruction definition of new antibody is initialized through vaccine extraction and inoculation. During the motion planning, once the robot meets with moving obstacles, the AAPF method is used for the optimal dynamic obstacle avoidance. The simulation results indicate that the proposed algorithm is characterized by good convergence property, strong planning ability, self-organizing, self-learning, and optimal obstacle avoidance in dynamic environments. The experiment in known indoor environment verifies the validity of AAPF-based AC-INA, too.


Sign in / Sign up

Export Citation Format

Share Document