scholarly journals How to Make a Better Magnet? Insertion of Additional Bridging Ligands into a Magnetic Coordination Polymer

2018 ◽  
Vol 4 (3) ◽  
pp. 41
Author(s):  
Gabriela Handzlik ◽  
Dawid Pinkowicz

A three-dimensional cyanide-bridged coordination polymer based on FeII (S = 2) and NbIV (S = 1/2) {[FeII(H2O)2]2[NbIV(CN)8]·4H2O}n (Fe2Nb) was modified at the self-assembly stage by inserting an additional formate HCOO− bridge into its cyanide framework. The resulting mixed-bridged {(NH4)[(H2O)FeII-(μ-HCOO)-FeII(H2O)][NbIV(CN)8]·3H2O}n (Fe2NbHCOO) exhibited additional FeII-HCOO-FeII structural motifs connecting each of the two FeII centers. The insertion of HCOO− was possible due to the substitution of some of the aqua ligands and crystallization water molecules in the parent framework by formate anions and ammonium cations. The formate molecular bridge not only shortened the distance between FeII ions in Fe2NbHCOO from 6.609 Å to 6.141 Å, but also created additional magnetic interaction pathways between the magnetic centers, resulting in an increase in the long range magnetic ordering temperature from 43 K for Fe2Nb to 58 K. The mixed-bridged Fe2NbHCOO also showed a much broader magnetic hysteresis loop of 0.102 T, compared to 0.013 T for Fe2Nb.

2015 ◽  
Vol 71 (7) ◽  
pp. 534-538 ◽  
Author(s):  
Feng Su ◽  
Li-Ping Lu

The title coordination polymer, poly[[aqua(μ5-1,1′-biphenyl-2,2′,5,5′-tetracarboxylato)bis[μ2-1,4-bis(1H-imidazol-1-yl)benzene]dicadmium(II)] dihydrate], {[Cd2(C16H6O8)(C12H10N4)2(H2O)]·2H2O}n, was crystallized from a mixture of 1,1′-biphenyl-2,2′,5,5′-tetracarboxylic acid (H4bpta), 1,4-bis(1H-imidazol-1-yl)benzene (1,4-bib) and cadmium nitrate in water–dimethylformamide. The crystal structure consists of two crystallographically independent CdIIcations, with one of the CdIIcations possessing a slightly distorted pentagonal bipyramidal geometry. The second CdIIcentre is coordinated by carboxylate O atoms and imidazole N atoms from two separate 1,4-bib ligands, displaying a distorted octahedral CdN2O4geometry. The completely deprotonated bpta4−ligand, exhibiting a new coordination mode, bridges five CdIIcations to form one-dimensional chainsviaμ3-η1:η2:η1:η2and μ2-η1:η1:η0:η0modes, and these are further linked by 1,4-bib ligands to form a three-dimensional framework with a (42.64)(4.62)(43.65.72) topology. The structure of the coordination polymer is reinforced by intermolecular hydrogen bonding between carboxylate O atoms, aqua ligands and crystallization water molecules. The solid-state photoluminescence properties were investigated and the complex might be a candidate for a thermally stable and solvent-resistant blue fluorescent material.


2017 ◽  
Vol 73 (11) ◽  
pp. 1599-1602 ◽  
Author(s):  
Matimon Sangsawang ◽  
Kittipong Chainok ◽  
Nanthawat Wannarit

The title compound, [CdNa2(C8H4O4)2(C3H7NO)(H2O)2]nor [CdNa2(1,3-bdc)2(DMF)(H2O)2]n, is a new CdII–NaIheterobimetallic coordination polymer. The asymmetric unit consists of one CdIIatom, two NaIatoms, two 1,3-bdc ligands, two coordinated water molecules and one coordinated DMF molecule. The CdIIatom exhibits a seven-coordinate geometry, while the NaIatoms can be considered to be pentacoordinate. The metal ions and their symmetry-related equivalents are connectedviachelating–bridging carboxylate groups of the 1,3-bdc ligands to generate a three-dimensional framework. In the crystal, there are classical O—H...O hydrogen bonds involving the coordinated water molecules and the 1,3-bdc carboxylate groups and π–π stacking between the benzene rings of the 1,3-bdc ligands present within the frameworks.


Author(s):  
Nives Politeo ◽  
Mateja Pisačić ◽  
Marijana Đaković ◽  
Vesna Sokol ◽  
Boris-Marko Kukovec

A 6-chloronicotinate (6-Clnic) salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4′-bipyridine (4,4′-bpy), namely, catena-poly[[[tetraaquanickel(II)]-μ-4,4′-bipyridine-κ2 N:N′] bis(6-chloronicotinate) tetrahydrate], {[Ni(C10H8N2)(H2O)4](C6H3ClNO2)2·4H2O} n or {[Ni(4,4′-bpy)(H2O)4](6-Clnic)2·4H2O} n , (1), was prepared by the reaction of nickel(II) sulfate heptahydrate, 6-chloronicotinic acid and 4,4′-bipyridine in a mixture of water and ethanol. The molecular structure of 1 comprises a one-dimensional polymeric {[Ni(4,4′-bpy)(H2O)4]2+} n cation, two 6-chloronicotinate anions and four water molecules of crystallization per repeating polymeric unit. The nickel(II) ion in the polymeric cation is octahedrally coordinated by four water molecule O atoms and by two 4,4′-bipyridine N atoms in the trans position. The 4,4′-bipyridine ligands act as bridges and, thus, connect the symmetry-related nickel(II) ions into an infinite one-dimensional polymeric chain extending along the b-axis direction. In the extended structure of 1, the polymeric chains of {[Ni(4,4′-bpy)(H2O)4]2+} n , the 6-chloronicotinate anions and the water molecules of crystallization are assembled into an infinite three-dimensional hydrogen-bonded network via strong O—H...O and O—H...N hydrogen bonds, leading to the formation of the representative hydrogen-bonded ring motifs: tetrameric R 2 4(8) and R 4 4(10) loops, a dimeric R 2 2(8) loop and a pentameric R 4 5(16) loop.


2012 ◽  
Vol 512-515 ◽  
pp. 1235-1239 ◽  
Author(s):  
Xiao Lin Liu ◽  
Xiao Liang Dou ◽  
Huan Ying Xie ◽  
Jian Feng Chen

Bismuth ferrite (BFO), one of very few multiferroics with simultaneous coexistence of ferroelectric and magnetic ordering, has attracted much attention due to its potential applications for new memory devices. In this work, 30~90 nm BFO powders with single rhombohedral phase were prepared by chemical coprecipitation method and after calcining of 500oC. Photocatalytic properties of the powders and dielectric properties of BFO ceramic were characterized, respectively. Cut-off wavelength of the powders at 590 nm exhibited efficient ultraviolet photocatalytic activity, which has been demonstrated by a photocatalytic result. 0.3g BFO powders can make 10 ppm RhB aqueous solution (100 ml) to decolorize and RhB decomposition rate reached to 95% during 3 hr UV irradiation. BFO ceramic can be obtained by sintering the green disc compacted with BFO powders at 800oC for 1h. Its dielectric constant is t about 250, and its dielectric loss is 0.03 at below 100 oC in the frequency range of 102 ~ 104 Hz and up to 1200 at 200 oC under 1 kHz, respectively. Reduced polarization is found due to higher loss and lower dielectric constant of the ceramic when the measuing frequency is more than 104 Hz. Magnetic hysteresis loop of BFO ceramic also shows weaker magnetic property, which may be attributed to size confinement effect of the nanostructures.


2015 ◽  
Vol 71 (10) ◽  
pp. 929-935 ◽  
Author(s):  
Hyun-Chul Kim ◽  
Ja-Min Gu ◽  
Seong Huh ◽  
Chul-Hyun Yo ◽  
Youngmee Kim

Two new one-dimensional CuIIcoordination polymers (CPs) containing theC2h-symmetric terphenyl-based dicarboxylate linker 1,1′:4′,1′′-terphenyl-3,3′-dicarboxylate (3,3′-TPDC), namelycatena-poly[[bis(dimethylamine-κN)copper(II)]-μ-1,1′:4′,1′′-terphenyl-3,3′-dicarboxylato-κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), andcatena-poly[[aquabis(dimethylamine-κN)copper(II)]-μ-1,1′:4′,1′′-terphenyl-3,3′-dicarboxylato-κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours,i.e.violet plates for (I) and blue needles for (II), both of which were analysed by X-ray crystallography. The 3,3′-TPDC bridging ligands coordinate the CuIIions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one-dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutuallytranspositions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one-dimensional coordination polymer chains, forming a two-dimensional network in (I) and a three-dimensional network in (II).


2013 ◽  
Vol 69 (10) ◽  
pp. 1140-1143 ◽  
Author(s):  
Masoud Mirzaei ◽  
Hossein Eshtiagh-Hosseini ◽  
Zahra Karrabi ◽  
Behrouz Notash

4-Hydroxypyridine-2,6-dicarboxylic acid (chelidamic acid, hypydc[H]H2) reacts with MnCl2·2H2O in the presence of piperazine in water to afford the title complex, {[Mn3(C7H2NO5)2(H2O)8]·3H2O}nor {[Mn3(hypydc)2(H2O)8]·3H2O}n. This compound is a one-dimensional coordination polymer, with the twofold symmetric repeat unit containing three metal centres. Two different coordination geometries are observed for the two independent MnIImetal centres,viz.a distorted pentagonal bipyramid and a distorted octahedron. The 4-oxidopyridine-2,6-dicarboxylate anions and two of the water molecules act as bridging ligands. The zigzag-like geometry of the coordination polymer is stabilized by hydrogen bonds. O—H...O and C—H...O hydrogen bonds and water clusters consolidate the three-dimensional network structure.


2015 ◽  
Vol 71 (10) ◽  
pp. 903-907 ◽  
Author(s):  
Yongfeng Yang ◽  
Tao Li ◽  
Yanmei Chen

The title compound, poly[[diaqua-1κ2O-tetrakis(μ3-pyridine-2,3-dicarboxylato)-2:1:2′κ10N,O2:O2′,O3:O3′;2:1:2′κ8O3:O3′:N,O2-diiron(III)strontium(II)] dihydrate], {[Fe2Sr(C7H3O4)4(H2O)2]·2H2O}n, which has triclinic (P\overline{1}) symmetry, was prepared by the reaction of pyridine-2,3-dicarboxylic acid, SrCl2·6H2O and Fe(OAc)2(OH) (OAc is acetate) in the presence of imidazole in water at 363 K. In the crystal structure, the pyridine-2,3-dicarboxylate (pydc2−) ligand exhibits μ3-η1,η1:η1:η1and μ3-η1,η1:η1,η1:η1coordination modes, bridging two FeIIIcations and one SrIIcation. The SrIIcation, which is located on an inversion centre, is eight-coordinated by six O atoms of four pydc2−ligands and two water molecules. The coordination geometry of the SrIIcation can be best described as distorted dodecahedral. The FeIIIcation is six-coordinated by O and N atoms of four pydc2−ligands in a slightly distorted octahedral geometry. Each FeIIIcation bridges two neighbouring FeIIIcations to form a one-dimensional [Fe2(pydc)4]nchain. The chains are connected by SrIIcations to form a three-dimensional framework. The topology type of this framework istfj. The structure displays O—H...O and C—H...O hydrogen bonding.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Ying Li ◽  
Tianxing Wang ◽  
Heyan Liu ◽  
Xuefang Dai ◽  
Xiao Yu ◽  
...  

With Monte Carlo method, we investigate the magnetic ground state, magnetic specific heat, and magnetic hysteresis loop for three types of closely spaced nanomagnet arrays in three-dimensional (3D) space. It is found that the magnetic ground state of three nanomagnet arrays exhibits the vortex order, caused by the long-range dipolar interactions. Three types of nanomagnet arrays have almost the same magnetic transition temperature even if their array formation in 3D triangular lattice is different. Some slight jump occurs in the hysteresis loop of the face-centered cubic nanomagnet array, while for the simple hexagonal nanomagnet and close-packed hexagonal nanomagnet arrays no jump is found.


2015 ◽  
Vol 54 (21) ◽  
pp. 10490-10496 ◽  
Author(s):  
Javier López-Cabrelles ◽  
Mónica Giménez-Marqués ◽  
Guillermo Mínguez Espallargas ◽  
Eugenio Coronado

Author(s):  
Rusul Alabada ◽  
Olga Kovalchukova ◽  
Irina Polyakova ◽  
Svetlana Strashnova ◽  
Vladimir Sergienko

In the title coordination polymer, [Ba(C5HN2O6)(C2O4)0.5(H2O)2]n, the tenfold coordination of the Ba centre consists of four O atoms from the two 4-nitro-2,5,6-trioxo-1,2,5,6-tetrahydropyridin-3-olate (L) anions, three O atoms of two oxalate anions and three water molecules. The Ba—O bond lengths fall in the range 2.698 (3)–2.978 (3) Å. TheLligand chelates two Ba atoms related by a screw axis, leading to formation of fused five- and six-membered chelate rings. Due to the bridging function of the ligands and water molecules, the complex monomers are connected into polymeric two-dimensional layers parallel to thebcplane. Intermolecular O—H...O hydrogen bonds link these layers into a three-dimensional supramolecular framework.


Sign in / Sign up

Export Citation Format

Share Document