scholarly journals The Advantages of EPR Spectroscopy in Exploring Diamagnetic Metal Ion Binding and Transfer Mechanisms in Biological Systems

2021 ◽  
Vol 8 (1) ◽  
pp. 3
Author(s):  
Shelly Meron ◽  
Yulia Shenberger ◽  
Sharon Ruthstein

Electron paramagnetic resonance (EPR) spectroscopy has emerged as an ideal biophysical tool to study complex biological processes. EPR spectroscopy can follow minor conformational changes in various proteins as a function of ligand or protein binding or interactions with high resolution and sensitivity. Resolving cellular mechanisms, involving small ligand binding or metal ion transfer, is not trivial and cannot be studied using conventional biophysical tools. In recent years, our group has been using EPR spectroscopy to study the mechanism underlying copper ion transfer in eukaryotic and prokaryotic systems. This mini-review focuses on our achievements following copper metal coordination in the diamagnetic oxidation state, Cu(I), between biomolecules. We discuss the conformational changes induced in proteins upon Cu(I) binding, as well as the conformational changes induced in two proteins involved in Cu(I) transfer. We also consider how EPR spectroscopy, together with other biophysical and computational tools, can identify the Cu(I)-binding sites. This work describes the advantages of EPR spectroscopy for studying biological processes that involve small ligand binding and transfer between intracellular proteins.

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1757 ◽  
Author(s):  
Szymon Kowalski ◽  
Dariusz Wyrzykowski ◽  
Iwona Inkielewicz-Stępniak

Discovering that metals are essential for the structure and function of biomolecules has given a completely new perspective on the role of metal ions in living organisms. Nowadays, the design and synthesis of new metal-based compounds, as well as metal ion binding components, for the treatment of human diseases is one of the main aims of bioinorganic chemistry. One of the areas in vanadium-based compound research is their potential anticancer activity. In this review, we summarize recent molecular and cellular mechanisms in the cytotoxic activity of many different synthetic vanadium complexes as well as inorganic salts. Such mechanisms shall include DNA binding, oxidative stress, cell cycle regulation and programed cell death. We focus mainly on cellular studies involving many type of cancer cell lines trying to highlight some new significant advances.


2020 ◽  
Vol 26 (4) ◽  
pp. 2529-2546 ◽  
Author(s):  
Laura Habasescu ◽  
Monica Jureschi ◽  
Brindusa-Alina Petre ◽  
Marcela Mihai ◽  
Robert-Vasile Gradinaru ◽  
...  

2009 ◽  
Vol 419 (1) ◽  
pp. 75-86 ◽  
Author(s):  
Jenny Erales ◽  
Brigitte Gontero ◽  
Julian Whitelegge ◽  
Frédéric Halgand

CP12 is a small chloroplastic protein involved in the Calvin cycle that was shown to bind copper, a metal ion that is involved in the transition of CP12 from a reduced to an oxidized state. In order to describe CP12's copper-binding properties, copper-IMAC experiments and site-directed mutagenesis based on computational modelling, were coupled with top-down MS [electrospray-ionization MS and MS/MS (tandem MS)]. Immobilized-copper-ion-affinity-chromatographic experiments allowed the primary characterization of the effects of mutation on copper binding. Top-down MS/MS experiments carried out under non-denaturing conditions on wild-type and mutant CP12–Cu2+ complexes then allowed fragment ions specifically binding the copper ion to be determined. Comparison of MS/MS datasets defined three regions involved in metal ion binding: residues Asp16–Asp23, Asp38–Lys50 and Asp70–Glu76, with the two first regions containing selected residues for mutation. These data confirmed that copper ligands involved glutamic acid and aspartic residues, a situation that contrasts with that obtaining for typical protein copper chelators. We propose that copper might play a role in the regulation of the biological activity of CP12.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 650-650
Author(s):  
Motomu Shimaoka ◽  
Azucena Salas ◽  
Wei Yang ◽  
Gabriele Weitz-Schmidt ◽  
Timothy A. Springer

Abstract The integrin LFA-1 (αLβ2) is an αβ heterodimeric adhesion molecule critical in the effective trafficking of leukocytes and in facilitating subsequent antigen-specific inter-action. Participation of αLβ2 in multiple steps critical for T-cell-mediated immunity in vivo makes αLβ2 a valid therapeutic target for anti-inflammation therapy. Many small-molecule antagonists to αLβ2 have been developed as anti-inflammatory agents, out of which polysubstituted (S)-2-benzoylamino propionic acids, represented by XVA143 (XVA), have emerged as the most potent antagonists. αLβ2 is a large glycoprotein with a complex multi-domain organization, where a conserved von Willebrand factor-type A domain is contained in each subunit, the inserted (I) domain in the α-subunit and the I-like domain in the β subunit. The α-subunit I domain directly binds ligand, whereas the β-subunit I-like domain is thought to play a regulatory role by interacting with a part of the I domain. Thus far, it remains to be elucidated which domain the antagonists bind to and how they inhibit αLβ2 function. Here we investigate a mechanistic basis of XVA activity. XVA blocked the αLβ2-ICAM-1 interaction with EC50 of < 1 nM and suppressed mixed lymphocyte reaction as potently as cyclosporin A. XVA did not block ligand binding by αLβ2 directly, as it did not block αLβ2 containing a mutant I domain that is stabilized in the high-affinity conformation. Rather, XVA interfered with conformational changes that convert the I domain to the high-affinity state. Surface plasmon resonance analysis using an isolated I domain showed that XVA did not target the I domain. Interestingly, XVA stabilized non-covalent αβ association sufficiently to make it resistant to denaturation with SDS. Stabilization of mutant αβ complexes was utilized to test compound binding to αLβ2 mutants and locate the inhibitor-binding site. As binding of XVA was found to be metal-dependent, alanine-scanning of the metal binding sites indicated that this compound binds to the metal ion-dependent adhesion site in the I-like domain, where it disrupts the interaction of the I-like domain with the I domain. XVA inhibits αLβ2 allosterically by perturbing the inter-domain communication that is critical to relay conformational signals which induce the active I domain conformation. Furthermore, XVA stabilized a global conformation of αLβ2 in the active extended form, whereas the ligand binding I domain was left in the inactive conformation, as demonstrated by exposure of activation-dependent epitopes in αLβ2 on the cell surface and electron microscopic images of the soluble recombinant αLβ2. The results strongly suggest that XVA would serve as a mimetic for the intrinsic ligand that is involved in receptor-ligand like interaction between the I domain and I-like domain. This inhibitor revealed a crucial intersection for relaying conformational signals within the integrin αLβ2. While blocking signals in one direction (to the I domain), the antagonists induce the active conformation of the I-like domain as well as the rest of domains, and thus transmit conformational signals in the opposite direction toward the transmembrane domains.


Sign in / Sign up

Export Citation Format

Share Document