scholarly journals Going to Extremes: Weakly Supervised Medical Image Segmentation

2021 ◽  
Vol 3 (2) ◽  
pp. 507-524
Author(s):  
Holger R. Roth ◽  
Dong Yang ◽  
Ziyue Xu ◽  
Xiaosong Wang ◽  
Daguang Xu

Medical image annotation is a major hurdle for developing precise and robust machine-learning models. Annotation is expensive, time-consuming, and often requires expert knowledge, particularly in the medical field. Here, we suggest using minimal user interaction in the form of extreme point clicks to train a segmentation model which, in effect, can be used to speed up medical image annotation. An initial segmentation is generated based on the extreme points using the random walker algorithm. This initial segmentation is then used as a noisy supervision signal to train a fully convolutional network that can segment the organ of interest, based on the provided user clicks. Through experimentation on several medical imaging datasets, we show that the predictions of the network can be refined using several rounds of training with the prediction from the same weakly annotated data. Further improvements are shown using the clicked points within a custom-designed loss and attention mechanism. Our approach has the potential to speed up the process of generating new training datasets for the development of new machine-learning and deep-learning-based models for, but not exclusively, medical image analysis.

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Tomi Kauppi ◽  
Joni-Kristian Kämäräinen ◽  
Lasse Lensu ◽  
Valentina Kalesnykiene ◽  
Iiris Sorri ◽  
...  

We address the performance evaluation practices for developing medical image analysis methods, in particular, how to establish and share databases of medical images with verified ground truth and solid evaluation protocols. Such databases support the development of better algorithms, execution of profound method comparisons, and, consequently, technology transfer from research laboratories to clinical practice. For this purpose, we propose a framework consisting of reusable methods and tools for the laborious task of constructing a benchmark database. We provide a software tool for medical image annotation helping to collect class label, spatial span, and expert's confidence on lesions and a method to appropriately combine the manual segmentations from multiple experts. The tool and all necessary functionality for method evaluation are provided as public software packages. As a case study, we utilized the framework and tools to establish the DiaRetDB1 V2.1 database for benchmarking diabetic retinopathy detection algorithms. The database contains a set of retinal images, ground truth based on information from multiple experts, and a baseline algorithm for the detection of retinopathy lesions.


Sign in / Sign up

Export Citation Format

Share Document