scholarly journals Forgotten topological index and reduced Zagreb index of four new operations of graphs

2019 ◽  
Vol 27 (1) ◽  
pp. 45-56
Author(s):  
A. Bharali ◽  
A. Mahanta ◽  
J. Buragohain

Abstract Indulal and Balakrishnan (2016) have put forward the Indu-Bala product and based on this product four new operations are defined by the authors of this manuscript in the paper “Four new operations of graphs based on Indu-Bala product and the Zagreb indices”. In this paper we establish explicit formulas of the forgotten topological index and reduced second Zagreb index in connection with these new operations of graphs.

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Hai-Xia Li ◽  
Sarfaraz Ahmad ◽  
Iftikhar Ahmad

In the fields of chemical graph theory, topological index is a type of a molecular descriptor that is calculated based on the graph of a chemical compound. In this paper, M-polynomial OKn and OPn networks are computed. The M-polynomial is rich in information about degree-based topological indices. By applying the basic rules of calculus on M-polynomials, the first and second Zagreb indices, modified second Zagreb index, general Randić index, inverse Randić index, symmetric division index, harmonic index, inverse sum index, and augmented Zagreb index are recovered.


Mathematics ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 137 ◽  
Author(s):  
Shahid Imran ◽  
Muhammad Siddiqui ◽  
Muhammad Imran ◽  
Muhammad Nadeem

A topological index is a number related to the atomic index that allows quantitative structure–action/property/toxicity connections. All the more vital topological indices correspond to certain physico-concoction properties like breaking point, solidness, strain vitality, and so forth, of synthetic mixes. The idea of the hyper Zagreb index, multiple Zagreb indices and Zagreb polynomials was set up in the substance diagram hypothesis in light of vertex degrees. These indices are valuable in the investigation of calming exercises of certain compound systems. In this paper, we computed the first and second Zagreb index, the hyper Zagreb index, multiple Zagreb indices and Zagreb polynomials of the line graph of wheel and ladder graphs by utilizing the idea of subdivision.


Author(s):  
Rao Li

Let G = (V(G), E(G)) be a graph. The complement of G is denoted by Gc. The forgotten topological index of G, denoted F(G), is defined as the sum of the cubes of the degrees of all the vertices in G. The second Zagreb index of G, denoted M2(G), is defined as the sum of the products of the degrees of pairs of adjacent vertices in G. A graph Gisk-Hamiltonian if for all X ⊂V(G) with|X| ≤ k, the subgraph induced byV(G) - Xis Hamiltonian. Clearly, G is 0-Hamiltonian if and only if G is Hamiltonian. A graph Gisk-path-coverableifV(G) can be covered bykor fewer vertex-disjoint paths. Using F(Gc) and M2(Gc), Li obtained several sufficient conditions for Hamiltonian and traceable graphs (Rao Li, Topological Indexes and Some Hamiltonian Properties of Graphs). In this chapter, the author presents sufficient conditions based upon F(Gc) and M2(Gc)for k-Hamiltonian, k-edge-Hamiltonian, k-path-coverable, k-connected, and k-edge-connected graphs.


2019 ◽  
Vol 11 (01) ◽  
pp. 1950006 ◽  
Author(s):  
Sourav Mondal ◽  
Nilanjan De ◽  
Anita Pal

Topological indices are numeric quantities that transform chemical structure to real number. Topological indices are used in QSAR/QSPR studies to correlate the bioactivity and physiochemical properties of molecule. In this paper, some newly designed neighborhood degree-based topological indices named as neighborhood Zagreb index ([Formula: see text]), neighborhood version of Forgotten topological index ([Formula: see text]), modified neighborhood version of Forgotten topological index ([Formula: see text]), neighborhood version of second Zagreb index ([Formula: see text]) and neighborhood version of hyper Zagreb index ([Formula: see text]) are obtained for Graphene and line graph of Graphene using subdivision idea. In addition, these indices are compared graphically with respect to their response for Graphene and line graph of subdivision of Graphene.


J ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 384-409
Author(s):  
Sourav Mondal ◽  
Nilanjan De ◽  
Anita Pal

Topological indices are numeric quantities that describes the topology of molecular structure in mathematical chemistry. An important area of applied mathematics is the chemical reaction network theory. Real-world problems can be modeled using this theory. Due to its worldwide applications, chemical networks have attracted researchers since their foundation. In this report, some silicate and oxide networks are studied, and exact expressions of some newly-developed neighborhood degree-based topological indices named as the neighborhood Zagreb index ( M N ), the neighborhood version of the forgotten topological index ( F N ), the modified neighborhood version of the forgotten topological index ( F N ∗ ), the neighborhood version of the second Zagreb index ( M 2 ∗ ), and neighborhood version of the hyper Zagreb index ( H M N ) are obtained for the aforementioned networks. In addition, a comparison among all the indices is shown graphically.


2019 ◽  
Vol 3 (2) ◽  
pp. 27-35
Author(s):  
Fazal Dayan ◽  
Muhammad Javaid ◽  
Muhammad Aziz ur Rehman

Naji et al. introduced the leap Zagreb indices of a graph in 2017 which are new distance-degree-based topological indices conceived depending on the second degree of vertices. In this paper, we have defined the first and second leap reduced reciprocal Randic index and leap reduced second Zagreb index for selected wheel related graphs.


2016 ◽  
Vol 4 (2) ◽  
pp. 47 ◽  
Author(s):  
Sharmila Devi ◽  
V. Kaladevi

For a (molecular) graph, the first Zagreb index M1 is equal to the sum of squares of the degrees of vertices, and the second Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices. Similarly, the hyper Zagreb index is defined as the sum of square of degree of vertices over all the edges.  In this paper, First we obtain the hyper Zagreb indices of some derived graphs and the generalized transformations graphs. Finally, the hyper Zagreb indices of double, extended double, thorn graph, subdivision vertex corona of graphs, Splice and link graphs are obtained.


2021 ◽  
Vol 44 (1) ◽  
pp. 150-156
Author(s):  
Siman Li ◽  
Li Shi ◽  
Wei Gao

Abstract Random structure plays an important role in the composition of compounds, and topological index is an important index to measure indirectly the properties of compounds. The Zagreb indices and its revised versions (or redefined versions) are frequently used chemical topological indices, which provide the theoretical basis for the determination of various physical-chemical properties of compounds. This article uses the tricks of probability theory to determine the reduced second Zagreb index and hyper-Zagreb index of two kinds of vital random graphs: G(n, p) and G(n, m).


2019 ◽  
Vol 12 (06) ◽  
pp. 2040003 ◽  
Author(s):  
Sümeyye Aykaç ◽  
Nihat Akgüneş ◽  
Ahmet Sinan Çevik

In this paper, first Zagreb index, second Zagreb index, first multiplicative Zagreb index, second multiplicative Zagreb index, first Zagreb coindices index, second Zagreb coindices index, first multiplicative Zagreb coindices index, second multiplicative Zagreb coindices index of [Formula: see text] have been established, where [Formula: see text] and [Formula: see text] are prime.


2016 ◽  
Vol 08 (02) ◽  
pp. 1650025 ◽  
Author(s):  
Nilanjan De ◽  
Sk. Md. Abu Nayeem ◽  
Anita Pal

The F-index of a graph is defined as the sum of cubes of the vertex degrees of the graph. This was introduced in 1972, in the same paper where the first and second Zagreb indices were introduced to study the structure-dependency of total [Formula: see text]-electron energy. But this topological index was not further studied till then. Very recently, Furtula and Gutman [A forgotten topological index,J. Math. Chem. 53(4) (2015) 1184–1190.] reinvestigated the index and named it “forgotten topological index” or “F-index”. In that paper, they present some basic properties of this index and showed that this index can enhance the physico-chemical applicability of Zagreb index. Here, we study the behavior of this index under several graph operations and apply our results to find the F-index of different chemically interesting molecular graphs and nanostructures.


Sign in / Sign up

Export Citation Format

Share Document