scholarly journals Existence Results of a Coupled System of Caputo Fractional Hahn Difference Equations with Nonlocal Fractional Hahn Integral Boundary Value Conditions

Mathematics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 15 ◽  
Author(s):  
Thongchai Dumrongpokaphan ◽  
Nichaphat Patanarapeelert ◽  
Thanin Sitthiwirattham

In this article, we propose a coupled system of Caputo fractional Hahn difference equations with nonlocal fractional Hahn integral boundary conditions. The existence and uniqueness result of solution for the problem is studied by using the Banach’s fixed point theorem. Furthermore, the existence of at least one solution is presented by using the Schauder fixed point theorem.

2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Ahmed Salem ◽  
Faris Alzahrani ◽  
Mohammad Alnegga

This research paper is about the existence and uniqueness of the coupled system of nonlinear fractional Langevin equations with multipoint and nonlocal integral boundary conditions. The Caputo fractional derivative is used to formulate the fractional differential equations, and the fractional integrals mentioned in the boundary conditions are due to Atangana–Baleanu and Katugampola. The existence of solution has been proven by two main fixed-point theorems: O’Regan’s fixed-point theorem and Krasnoselskii’s fixed-point theorem. By applying Banach’s fixed-point theorem, we proved the uniqueness result for the concerned problem. This research paper highlights the examples related with theorems that have already been proven.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 256 ◽  
Author(s):  
Jarunee Soontharanon ◽  
Saowaluck Chasreechai ◽  
Thanin Sitthiwirattham

In this article, we propose a coupled system of fractional difference equations with nonlocal fractional sum boundary conditions on the discrete half-line and study its existence result by using Schauder’s fixed point theorem. An example is provided to illustrate the results.


2015 ◽  
Vol 20 (2) ◽  
pp. 188-204 ◽  
Author(s):  
Ilkay Yaslan Karaca ◽  
Fatma Tokmak Fen

In this paper, by using double fixed point theorem and a new fixed point theorem, some sufficient conditions for the existence of at least two and at least three positive solutions of an nth-order boundary value problem with integral boundary conditions are established, respectively. We also give two examples to illustrate our main results.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Nichaphat Patanarapeelert ◽  
Thanin Sitthiwirattham

The existence and uniqueness results of two fractional Hahn difference boundary value problems are studied. The first problem is a Riemann-Liouville fractional Hahn difference boundary value problem for fractional Hahn integrodifference equations. The second is a fractional Hahn integral boundary value problem for Caputo fractional Hahn difference equations. The Banach fixed-point theorem and the Schauder fixed-point theorem are used as tools to prove the existence and uniqueness of solution of the problems.


Author(s):  
Natthaphong Thongsalee ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

AbstractIn this paper we study a new class of Riemann-Liouville fractional differential equations subject to nonlocal Erdélyi-Kober fractional integral boundary conditions. Existence and uniqueness results are obtained by using a variety of fixed point theorems, such as Banach fixed point theorem, Nonlinear Contractions, Krasnoselskii fixed point theorem, Leray-Schauder Nonlinear Alternative and Leray-Schauder degree theory. Examples illustrating the obtained results are also presented.


Author(s):  
Rui Gao

In this paper, we prove the expression and the existence of a class of nonlinear impulsive fractional order differential equations with integral boundary conditions. The unique solution of the differential equations by Green’s function is given. By using Schauder fixed point theorem and Leray-Schauder fixed point theorem, several sufficient conditions for the existence and uniqueness results are established.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ahmed Alsaedi ◽  
Sotiris K. Ntouyas ◽  
Bashir Ahmad

We consider a boundary value problem of fractional integrodifferential equations with new nonlocal integral boundary conditions of the form:x(0)=βx(θ), x(ξ)=α∫η1‍x(s)ds, and0<θ<ξ<η<1. According to these conditions, the value of the unknown function at the left end pointt=0is proportional to its value at a nonlocal pointθwhile the value at an arbitrary (local) pointξis proportional to the contribution due to a substrip of arbitrary length(1-η). These conditions appear in the mathematical modelling of physical problems when different parts (nonlocal points and substrips of arbitrary length) of the domain are involved in the input data for the process under consideration. We discuss the existence of solutions for the given problem by means of the Sadovski fixed point theorem for condensing maps and a fixed point theorem due to O’Regan. Some illustrative examples are also presented.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Khalid Hilal ◽  
Lahcen Ibnelazyz ◽  
Karim Guida ◽  
Said Melliani

In this paper, we discuss the existence of solutions for nonlinear fractional Langevin equations with nonseparated type integral boundary conditions. The Banach fixed point theorem and Krasnoselskii fixed point theorem are applied to establish the results. Some examples are provided for the illustration of the main work.


2021 ◽  
Vol 66 (4) ◽  
pp. 691-708
Author(s):  
Habib Djourdem ◽  
◽  
Slimane Benaicha ◽  

In this paper, we investigate a class of nonlinear fractional differential equations that contain both the multi-term fractional integral boundary condition and the multi-point boundary condition. By the Krasnoselskii fixed point theorem we obtain the existence of at least one positive solution. Then, we obtain the existence of at least three positive solutions by the Legget-Williams fixed point theorem. Two examples are given to illustrate our main results.


Sign in / Sign up

Export Citation Format

Share Document