scholarly journals The Truncation Regularization Method for Identifying the Initial Value on Non-Homogeneous Time-Fractional Diffusion-Wave Equations

Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1007 ◽  
Author(s):  
Fan Yang ◽  
Qu Pu ◽  
Xiao-Xiao Li ◽  
Dun-Gang Li

In the essay, we consider an initial value question for a mixed initial-boundary value of time-fractional diffusion-wave equations. This matter is an ill-posed problem; the solution relies discontinuously on the measured information. The truncation regularization technique is used for restoring the initial value functions. The convergence estimations are given in a priori regularization parameter choice regulations and a posteriori regularization parameter choice regulations. Numerical examples are given to demonstrate this is effective and practicable.

Author(s):  
Chandradeepa Dhaigude ◽  
Vasant Nikam

AbstractThe purpose of this paper is to obtain solutions for both linear and nonlinear initial value problems (IVPs) for fractional transport equations and fractional diffusion-wave equations using the iterative method.


2019 ◽  
Vol 27 (5) ◽  
pp. 609-621 ◽  
Author(s):  
Fan Yang ◽  
Ni Wang ◽  
Xiao-Xiao Li ◽  
Can-Yun Huang

Abstract In this paper, an inverse problem to identify the initial value for high dimension time fractional diffusion equation on spherically symmetric domain is considered. This problem is ill-posed in the sense of Hadamard, so the quasi-boundary regularization method is proposed to solve the problem. The convergence estimates between the regularization solution and the exact solution are presented under the a priori and a posteriori regularization parameter choice rules. Numerical examples are provided to show the effectiveness and stability of the proposed method.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Le Nhat Huynh ◽  
Nguyen Hoang Luc ◽  
Dumitru Baleanu ◽  
Le Dinh Long

AbstractThis article is devoted to the study of the source function for the Caputo–Fabrizio time fractional diffusion equation. This new definition of the fractional derivative has no singularity. In other words, the new derivative has a smooth kernel. Here, we investigate the existence of the source term. Through an example, we show that this problem is ill-posed (in the sense of Hadamard), and the fractional Landweber method and the modified quasi-boundary value method are used to deal with this inverse problem and the regularized solution is also obtained. The convergence estimates are addressed for the regularized solution to the exact solution by using an a priori regularization parameter choice rule and an a posteriori parameter choice rule. In addition, we give a numerical example to illustrate the proposed method.


Filomat ◽  
2016 ◽  
Vol 30 (5) ◽  
pp. 1375-1385 ◽  
Author(s):  
Aleksandra Delic

In this paper an initial-boundary value problem for fractional in time diffusion-wave equation is considered. A priori estimates in Sobolev spaces are derived. A fully discrete difference scheme approximating the problem is proposed and its stability and convergence are investigated. A numerical example demonstrates the theoretical results.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 923 ◽  
Author(s):  
Abdul Ghafoor ◽  
Sirajul Haq ◽  
Manzoor Hussain ◽  
Poom Kumam ◽  
Muhammad Asif Jan

In this paper, a wavelet based collocation method is formulated for an approximate solution of (1 + 1)- and (1 + 2)-dimensional time fractional diffusion wave equations. The main objective of this study is to combine the finite difference method with Haar wavelets. One and two dimensional Haar wavelets are used for the discretization of a spatial operator while time fractional derivative is approximated using second order finite difference and quadrature rule. The scheme has an excellent feature that converts a time fractional partial differential equation to a system of algebraic equations which can be solved easily. The suggested technique is applied to solve some test problems. The obtained results have been compared with existing results in the literature. Also, the accuracy of the scheme has been checked by computing L 2 and L ∞ error norms. Computations validate that the proposed method produces good results, which are comparable with exact solutions and those presented before.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiaopeng Zhao

AbstractIn this paper, we study the long time behavior of solution for the initial-boundary value problem of convective Cahn–Hilliard equation in a 2D case. We show that the equation has a global attractor in $H^{4}(\Omega )$ H 4 ( Ω ) when the initial value belongs to $H^{1}(\Omega )$ H 1 ( Ω ) .


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Said Mesloub ◽  
Hassan Eltayeb Gadain

Abstract A priori bounds constitute a crucial and powerful tool in the investigation of initial boundary value problems for linear and nonlinear fractional and integer order differential equations in bounded domains. We present herein a collection of a priori estimates of the solution for an initial boundary value problem for a singular fractional evolution equation (generalized time-fractional wave equation) with mass absorption. The Riemann–Liouville derivative is employed. Results of uniqueness and dependence of the solution upon the data were obtained in two cases, the damped and the undamped case. The uniqueness and continuous dependence (stability of solution) of the solution follows from the obtained a priori estimates in fractional Sobolev spaces. These spaces give what are called weak solutions to our partial differential equations (they are based on the notion of the weak derivatives). The method of energy inequalities is used to obtain different a priori estimates.


2020 ◽  
Vol 28 (5) ◽  
pp. 659-676
Author(s):  
Dinh Nho Hào ◽  
Nguyen Van Duc ◽  
Nguyen Van Thang ◽  
Nguyen Trung Thành

AbstractThe problem of determining the initial condition from noisy final observations in time-fractional parabolic equations is considered. This problem is well known to be ill-posed, and it is regularized by backward Sobolev-type equations. Error estimates of Hölder type are obtained with a priori and a posteriori regularization parameter choice rules. The proposed regularization method results in a stable noniterative numerical scheme. The theoretical error estimates are confirmed by numerical tests for one- and two-dimensional equations.


Sign in / Sign up

Export Citation Format

Share Document