scholarly journals Nonlinear Integro-Differential Equations Involving Mixed Right and Left Fractional Derivatives and Integrals with Nonlocal Boundary Data

Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 336 ◽  
Author(s):  
Bashir Ahmad ◽  
Abrar Broom ◽  
Ahmed Alsaedi ◽  
Sotiris K. Ntouyas

In this paper, we study the existence of solutions for a new nonlocal boundary value problem of integro-differential equations involving mixed left and right Caputo and Riemann–Liouville fractional derivatives and Riemann–Liouville fractional integrals of different orders. Our results rely on the standard tools of functional analysis. Examples are constructed to demonstrate the application of the derived results.

2020 ◽  
Vol 36 (3) ◽  
pp. 453-462
Author(s):  
RODICA LUCA

We investigate the existence of solutions for a Riemann-Liouville fractional differential equation with a nonlinearity dependent of fractional integrals, subject to nonlocal boundary conditions which contain various fractional derivatives and Riemann-Stieltjes integrals. In the proof of our main results we use different fixed point theorems.


2018 ◽  
Vol 21 (2) ◽  
pp. 423-441 ◽  
Author(s):  
Bashir Ahmad ◽  
Rodica Luca

AbstractWe study the existence of solutions for a system of nonlinear Caputo fractional differential equations with coupled boundary conditions involving Riemann-Liouville fractional integrals, by using the Schauder fixed point theorem and the nonlinear alternative of Leray-Schauder type. Two examples are given to support our main results.


Author(s):  
Jian Yuan ◽  
Youan Zhang ◽  
Jingmao Liu ◽  
Bao Shi

Fractional calculus is viewed as a novel and powerful tool to describe the stress and strain relations in viscoelastic materials. Consequently, the motions of engineering structures incorporated with viscoelastic dampers can be described by fractional-order differential equations. To deal with the fractional differential equations, initialization for fractional derivatives and integrals is considered to be a fundamental and unavoidable problem. However, this issue has been an open problem for a long time and controversy persists. The initialization function approach and the infinite state approach are two effective ways in initialization for fractional derivatives and integrals. By comparing the above two methods, this technical brief presents equivalence and unification of the Riemann–Liouville fractional integrals and the diffusive representation. First, the equivalence is proved in zero initialization case where both of the initialization function and the distributed initial condition are zero. Then, by means of initialized fractional integration, equivalence and unification in the case of arbitrary initialization are addressed. Connections between the initialization function and the distributed initial condition are derived. Besides, the infinite dimensional distributed initial condition is determined by means of input function during historic period.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Rodica Luca

AbstractWe investigate the existence of solutions for a system of Riemann–Liouville fractional differential equations with nonlinearities dependent on fractional integrals, subject to coupled nonlocal boundary conditions which contain various fractional derivatives and Riemann–Stieltjes integrals. In the proof of our main results, we use some theorems from the fixed point theory.


2016 ◽  
pp. 3973-3982
Author(s):  
V. R. Lakshmi Gorty

The fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of fractional order is established on finite and infinite interval of the real-line, half axis and real axis. The Bessel-type fractional derivatives are also established. The properties of Fractional derivatives and integrals are studied. The fractional derivatives of Bessel-type of fractional order on finite of the real-line are studied by graphical representation. Results are direct output of the computer algebra system coded from MATLAB R2011b.


2016 ◽  
Vol 56 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Katarzyna Szymańska-Dębowska

Abstract This work is devoted to the existence of solutions for a system of nonlocal resonant boundary value problem $$\matrix{{x'' = f(t,x),} \hfill & {x'(0) = 0,} \hfill & {x'(1) = {\int_0^1 {x(s)dg(s)},} }} $$ where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation.


2022 ◽  
Vol 6 (1) ◽  
pp. 41
Author(s):  
Ravshan Ashurov ◽  
Yusuf Fayziev

The nonlocal boundary value problem, dtρu(t)+Au(t)=f(t) (0<ρ<1, 0<t≤T), u(ξ)=αu(0)+φ (α is a constant and 0<ξ≤T), in an arbitrary separable Hilbert space H with the strongly positive selfadjoint operator A, is considered. The operator dt on the left hand side of the equation expresses either the Caputo derivative or the Riemann–Liouville derivative; naturally, in the case of the Riemann–Liouville derivatives, the nonlocal boundary condition should be slightly changed. Existence and uniqueness theorems for solutions of the problems under consideration are proved. The influence of the constant α on the existence of a solution to problems is investigated. Inequalities of coercivity type are obtained and it is shown that these inequalities differ depending on the considered type of fractional derivatives. The inverse problems of determining the right-hand side of the equation and the function φ in the boundary conditions are investigated.


Sign in / Sign up

Export Citation Format

Share Document