scholarly journals Computer Simulation and Iterative Algorithm for Approximate Solving of Initial Value Problem for Riemann-Liouville Fractional Delay Differential Equations

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 477
Author(s):  
Snezhana Hristova ◽  
Kremena Stefanova ◽  
Angel Golev

The main aim of this paper is to suggest an algorithm for constructing two monotone sequences of mild lower and upper solutions which are convergent to the mild solution of the initial value problem for Riemann-Liouville fractional delay differential equation. The iterative scheme is based on a monotone iterative technique. The suggested scheme is computerized and applied to solve approximately the initial value problem for scalar nonlinear Riemann-Liouville fractional differential equations with a constant delay on a finite interval. The suggested and well-grounded algorithm is applied to a particular problem and the practical usefulness is illustrated.

2019 ◽  
Vol 69 (3) ◽  
pp. 583-598 ◽  
Author(s):  
Ravi Agarwal ◽  
Snezhana Hristova ◽  
Donal O’Regan

Abstract Caputo fractional delay differential equations with non-instantaneous impulses are studied. Initially a brief overview of the basic two approaches in the interpretation of solutions is given. A generalization of Mittag-Leffler stability with respect to non-instantaneous impulses is given and sufficient conditions are obtained. Lyapunov functions and the Razumikhin technique will be applied and appropriate derivatives among the studied fractional equations is defined and applied. Examples are given to illustrate our results.


Axioms ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 57 ◽  
Author(s):  
Choukri Derbazi ◽  
Zidane Baitiche ◽  
Mouffak Benchohra ◽  
Alberto Cabada

In this article, we discuss the existence and uniqueness of extremal solutions for nonlinear initial value problems of fractional differential equations involving the ψ -Caputo derivative. Moreover, some uniqueness results are obtained. Our results rely on the standard tools of functional analysis. More precisely we apply the monotone iterative technique combined with the method of upper and lower solutions to establish sufficient conditions for existence as well as the uniqueness of extremal solutions to the initial value problem. An illustrative example is presented to point out the applicability of our main results.


2020 ◽  
Vol 26 (1) ◽  
pp. 21-47 ◽  
Author(s):  
Ravi Agarwal ◽  
A. Golev ◽  
S. Hristova ◽  
D. O’Regan

AbstractThe main aim of this paper is to suggest some algorithms and to use them in an appropriate computer environment to solve approximately the initial value problem for scalar nonlinear Riemann–Liouville fractional differential equations on a finite interval. The iterative schemes are based on appropriately defined lower and upper solutions to the given problem. A number of different cases depending on the type of lower and upper solutions are studied and various schemes for constructing successive approximations are provided. The suggested schemes are applied to some problems and their practical usefulness is illustrated.


2020 ◽  
Vol 23 (1) ◽  
pp. 250-267 ◽  
Author(s):  
Hoang The Tuan ◽  
Stefan Siegmund

AbstractIn this paper, we study the asymptotic behavior of solutions to a scalar fractional delay differential equations around the equilibrium points. More precise, we provide conditions on the coefficients under which a linear fractional delay equation is asymptotically stable and show that the asymptotic stability of the trivial solution is preserved under a small nonlinear Lipschitz perturbation of the fractional delay differential equation.


2017 ◽  
Vol 35 (2) ◽  
pp. 49-58 ◽  
Author(s):  
Behrouz Parsa Moghaddam ◽  
Zeynab Salamat Mostaghim

In this paper we present and discuss a new numerical scheme for solving fractional delay differential equations of the generalform:$$D^{\beta}_{*}y(t)=f(t,y(t),y(t-\tau),D^{\alpha}_{*}y(t),D^{\alpha}_{*}y(t-\tau))$$on $a\leq t\leq b$,$0<\alpha\leq1$,$1<\beta\leq2$ and under the following interval and boundary conditions:\\$y(t)=\varphi(t) \qquad\qquad -\tau \leq t \leq a,$\\$y(b)=\gamma$\\where $D^{\beta}_{*}y(t)$,$D^{\alpha}_{*}y(t)$ and $D^{\alpha}_{*}y(t-\tau)$ are the standard Caputo fractional derivatives, $\varphi$ is the initial value and $\gamma$ is a smooth function.\\We also provide this method for solving some scientific models. The obtained results show that the propose method is veryeffective and convenient.


2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
İbrahim Avcı 

In this paper, we consider numerical solutions for a general form of fractional delay differential equations (FDDEs) with fractional derivatives defined in the Caputo sense. A fractional integration operational matrix, created using a fractional Taylor basis, is applied to solve these FDDEs. The main characteristic of this approach is, by utilizing the operational matrix of fractional integration, to reduce the given differential equation to a set of algebraic equations with unknown coefficients. This equation system can be solved efficiently using a computer algorithm. A bound on the error for the best approximation and fractional integration are also given. Several examples are given to illustrate the validity and applicability of the technique. The efficiency of the presented method is revealed by comparing results with some existing solutions, the findings of some other approaches from the literature and by plotting absolute error figures.


Sign in / Sign up

Export Citation Format

Share Document