scholarly journals A Closed-Form Solution of Prestressed Annular Membrane Internally-Connected with Rigid Circular Plate and Transversely-Loaded by Central Shaft

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 521
Author(s):  
Zhi-Xin Yang ◽  
Jun-Yi Sun ◽  
Zhi-Hang Zhao ◽  
Shou-Zhen Li ◽  
Xiao-Ting He

In this paper, we analytically dealt with the usually so-called prestressed annular membrane problem, that is, the problem of axisymmetric deformation of the annular membrane with an initial in-plane tensile stress, in which the prestressed annular membrane is peripherally fixed, internally connected with a rigid circular plate, and loaded by a shaft at the center of this rigid circular plate. The prestress effect, that is, the influence of the initial stress in the undeformed membrane on the axisymmetric deformation of the membrane, was taken into account in this study by establishing the boundary condition with initial stress, while in the existing work by establishing the physical equation with initial stress. By creating an integral expression of elementary function, the governing equation of a second-order differential equation was reduced to a first-order differential equation with an undetermined integral constant. According to the three preconditions that the undetermined integral constant is less than, equal to, or greater than zero, the resulting first-order differential equation was further divided into three cases to solve, such that each case can be solved by creating a new integral expression of elementary function. Finally, a characteristic equation for determining the three preconditions was deduced in order to make the three preconditions correspond to the situation in practice. The solution presented here could be called the extended annular membrane solution since it can be regressed into the classic annular membrane solution when the initial stress is equal to zero.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yun Xin ◽  
Xiaoxiao Cui ◽  
Jie Liu

Abstract The main purpose of this paper is to obtain an exact expression of the positive periodic solution for a first-order differential equation with attractive and repulsive singularities. Moreover, we prove the existence of at least one positive periodic solution for this equation with an indefinite singularity by applications of topological degree theorem, and give the upper and lower bounds of the positive periodic solution.



2021 ◽  
pp. 1-19
Author(s):  
Calogero Vetro ◽  
Dariusz Wardowski

We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing how suitable coefficient functions determine the asymptotic and (non-)oscillatory behavior of solutions. We use comparison technique with first-order differential equations together with the Kusano–Naito’s and Philos’ approaches.



2000 ◽  
Vol 15 (28) ◽  
pp. 4477-4498 ◽  
Author(s):  
P. M. LLATAS ◽  
A. V. RAMALLO ◽  
J. M. SÁNCHEZ DE SANTOS

We analyze the world volume solitons of a D3-brane probe in the background of parallel (p, q) five-branes. The D3-brane is embedded along the directions transverse to the five-branes of the background. By using the S duality invariance of the D3-brane, we find a first-order differential equation whose solutions saturate an energy bound. The SO(3) invariant solutions of this equation are found analytically. They represent world volume solitons which can be interpreted as formed by parallel (-q, p) strings emanating from the D3-brane world volume. It is shown that these configurations are 1/4 supersymmetric and provide a world volume realization of the Hanany–Witten effect.



1963 ◽  
Vol 3 (2) ◽  
pp. 202-206 ◽  
Author(s):  
J. C. Butcher

Huta [1], [2] has given two processes for solving a first order differential equation to sixth order accuracy. His methods are each eight stage Runge-Kutta processes and differ mainly in that the later process has simpler coefficients occurring in it.





Sign in / Sign up

Export Citation Format

Share Document