scholarly journals Complete Asymptotics for Solution of Singularly Perturbed Dynamical Systems with Single Well Potential

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 949
Author(s):  
Denis I. Borisov ◽  
Oskar A. Sultanov

We consider a singularly perturbed boundary value problem ( − ε 2 ∆ + ∇ V · ∇ ) u ε = 0 in Ω , u ε = f on ∂ Ω , f ∈ C ∞ ( ∂ Ω ) . The function V is supposed to be sufficiently smooth and to have the only minimum in the domain Ω . This minimum can degenerate. The potential V has no other stationary points in Ω and its normal derivative at the boundary is non-zero. Such a problem arises in studying Brownian motion governed by overdamped Langevin dynamics in the presence of a single attracting point. It describes the distribution of the points at the boundary ∂ Ω , at which the trajectories of the Brownian particle hit the boundary for the first time. Our main result is a complete asymptotic expansion for u ε as ε → + 0 . This asymptotic is a sum of a term K ε Ψ ε and a boundary layer, where Ψ ε is the eigenfunction associated with the lowest eigenvalue of the considered problem and K ε is some constant. We provide complete asymptotic expansions for both K ε and Ψ ε ; the boundary layer is also an infinite asymptotic series power in ε . The error term in the asymptotics for u ε is estimated in various norms.




2009 ◽  
Vol 9 (1) ◽  
pp. 100-110
Author(s):  
G. I. Shishkin

AbstractAn initial-boundary value problem is considered in an unbounded do- main on the x-axis for a singularly perturbed parabolic reaction-diffusion equation. For small values of the parameter ε, a parabolic boundary layer arises in a neighbourhood of the lateral part of the boundary. In this problem, the error of a discrete solution in the maximum norm grows without bound even for fixed values of the parameter ε. In the present paper, the proximity of solutions of the initial-boundary value problem and of its numerical approximations is considered. Using the method of special grids condensing in a neighbourhood of the boundary layer, a special finite difference scheme converging ε-uniformly in the weight maximum norm has been constructed.



Author(s):  
Ilkizar V. Amirkhanov ◽  
Irina S. Kolosova ◽  
Sergey A. Vasilyev

The quasi-potential approach is very famous in modern relativistic particles physics. This approach is based on the so-called covariant single-time formulation of quantum field theory in which the dynamics of fields and particles is described on a space-like three-dimensional hypersurface in the Minkowski space. Special attention in this approach is paid to methods for constructing various quasi-potentials. The quasipotentials allow to describe the characteristics of relativistic particles interactions in quark models such as amplitudes of hadron elastic scatterings, mass spectra, widths of meson decays and cross sections of deep inelastic scatterings of leptons on hadrons. In this paper SturmLiouville problems with periodic boundary conditions on a segment and a positive half-line for the 2m-order truncated relativistic finite-difference Schrdinger equation (LogunovTavkhelidzeKadyshevsky equation, LTKT-equation) with a small parameter are considered. A method for constructing of asymptotic eigenfunctions and eigenvalues in the form of asymptotic series for singularly perturbed SturmLiouville problems with periodic boundary conditions is proposed. It is assumed that eigenfunctions have regular and boundary-layer components. This method is a generalization of asymptotic methods that were proposed in the works of A. N. Tikhonov, A. B. Vasilyeva, and V. F Butuzov. We present proof of theorems that can be used to evaluate the asymptotic convergence for singularly perturbed problems solutions to solutions of degenerate problems when 0 and the asymptotic convergence of truncation equation solutions in the case m. In addition, the SturmLiouville problem on the positive half-line with a periodic boundary conditions for the quantum harmonic oscillator is considered. Eigenfunctions and eigenvalues are constructed for this problem as asymptotic solutions for 4-order LTKT-equation.



Sign in / Sign up

Export Citation Format

Share Document