scholarly journals Weaker Conditions for the q-Steffensen Inequality and Some Related Generalizations

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1462
Author(s):  
Ksenija Smoljak Kalamir

The aim of this paper is to study the q-Steffensen inequality and to prove some weaker conditions for this inequality in quantum calculus. Further, we prove q-analogues of some frequently used generalizations of Steffensen’s inequality and obtain some refinements of q-Steffensen’s inequality and its generalizations.


2014 ◽  
Vol 58 (1) ◽  
pp. 53-75
Author(s):  
Josip Pečarić ◽  
Anamarija Perušić ◽  
Ksenija Smoljak

Abstract In this paper, generalizations of Steffensen’s inequality with bounds involving any two subintervals motivated by Cerone’s generalizations are given. Furthermore, weaker conditions for Cerone’s generalization as well as for new generalizations obtained in this paper are given. Moreover, functionals defined as the difference between the left-hand and the right-hand side of these generalizations are studied and new Stolarsky type means related to them are obtained.



Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3155-3169 ◽  
Author(s):  
Seth Kermausuor ◽  
Eze Nwaeze

Recently, a new Ostrowski type inequality on time scales for k points was proved in [G. Xu, Z. B. Fang: A Generalization of Ostrowski type inequality on time scales with k points. Journal of Mathematical Inequalities (2017), 11(1):41-48]. In this article, we extend this result to the 2-dimensional case. Besides extension, our results also generalize the three main results of Meng and Feng in the paper [Generalized Ostrowski type inequalities for multiple points on time scales involving functions of two independent variables. Journal of Inequalities and Applications (2012), 2012:74]. In addition, we apply some of our theorems to the continuous, discrete, and quantum calculus to obtain more interesting results in this direction. We hope that results obtained in this paper would find their place in approximation and numerical analysis.



Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5105-5109
Author(s):  
Hüseyin Bor

In this paper, we generalize a known theorem under more weaker conditions dealing with the generalized absolute Ces?ro summability factors of infinite series by using quasi monotone sequences and quasi power increasing sequences. This theorem also includes some new results.



2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Soh Edwin Mukiawa ◽  
Cyril Dennis Enyi ◽  
Tijani Abdulaziz Apalara

AbstractWe investigate a thermoelastic Bresse system with viscoelastic damping acting on the shear force and heat conduction acting on the bending moment. We show that with weaker conditions on the relaxation function and physical parameters, the solution energy has general and optimal decay rates. Some examples are given to illustrate the findings.



Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1216
Author(s):  
Jessada Tariboon ◽  
Muhammad Aamir Ali ◽  
Hüseyin Budak ◽  
Sotiris K. Ntouyas

In this paper, the notions of post-quantum integrals for two-variable interval-valued functions are presented. The newly described integrals are then used to prove some new Hermite–Hadamard inclusions for co-ordinated convex interval-valued functions. Many of the findings in this paper are important extensions of previous findings in the literature. Finally, we present a few examples of our new findings. Analytic inequalities of this nature and especially the techniques involved have applications in various areas in which symmetry plays a prominent role.



2020 ◽  
Vol 53 (1) ◽  
pp. 44-57
Author(s):  
Mohammed Ali ◽  
Qutaibeh Katatbeh

AbstractIn this article, we study the generalized parabolic parametric Marcinkiewicz integral operators { {\mathcal M} }_{{\Omega },h,{\Phi },\lambda }^{(r)} related to polynomial compound curves. Under some weak conditions on the kernels, we establish appropriate estimates of these operators. By the virtue of the obtained estimates along with an extrapolation argument, we give the boundedness of the aforementioned operators from Triebel-Lizorkin spaces to Lp spaces under weaker conditions on Ω and h. Our results represent significant improvements and natural extensions of what was known previously.



2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Liyun Jin ◽  
Hua Luo

Abstract In this paper, we mainly consider a kind of discrete second-order boundary value problem with fully nonlinear term. By using the fixed-point index theory, we obtain some existence results of positive solutions of this kind of problems. Instead of the upper and lower limits condition on f, we may only impose some weaker conditions on f.



Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1102
Author(s):  
Yashoverdhan Vyas ◽  
Hari M. Srivastava ◽  
Shivani Pathak ◽  
Kalpana Fatawat

This paper provides three classes of q-summation formulas in the form of general contiguous extensions of the first q-Kummer summation theorem. Their derivations are presented by using three methods, which are along the lines of the three types of well-known proofs of the q-Kummer summation theorem with a key role of the q-binomial theorem. In addition to the q-binomial theorem, the first proof makes use of Thomae’s q-integral representation and the second proof needs Heine’s transformation. Whereas the third proof utilizes only the q-binomial theorem. Subsequently, the applications of these summation formulas in obtaining the general contiguous extensions of the second and the third q-Kummer summation theorems are also presented. Furthermore, the investigated results are specialized to give many of the known as well as presumably new q-summation theorems, which are contiguous to the three q-Kummer summation theorems. This work is motivated by the observation that the basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) gamma and q-hypergeometric functions and basic (or q-) hypergeometric polynomials, are applicable particularly in several diverse areas including Number Theory, Theory of Partitions and Combinatorial Analysis as well as in the study of Combinatorial Generating Functions. Just as it is known in the theory of the Gauss, Kummer (or confluent), Clausen and the generalized hypergeometric functions, the parameters in the corresponding basic or quantum (or q-) hypergeometric functions are symmetric in the sense that they remain invariant when the order of the p numerator parameters or when the order of the q denominator parameters is arbitrarily changed. A case has therefore been made for the symmetry possessed not only by hypergeometric functions and basic or quantum (or q-) hypergeometric functions, which are studied in this paper, but also by the symmetric quantum calculus itself.



2021 ◽  
Vol 58 (2) ◽  
pp. 469-483
Author(s):  
Jesper Møller ◽  
Eliza O’Reilly

AbstractFor a determinantal point process (DPP) X with a kernel K whose spectrum is strictly less than one, André Goldman has established a coupling to its reduced Palm process $X^u$ at a point u with $K(u,u)>0$ so that, almost surely, $X^u$ is obtained by removing a finite number of points from X. We sharpen this result, assuming weaker conditions and establishing that $X^u$ can be obtained by removing at most one point from X, where we specify the distribution of the difference $\xi_u: = X\setminus X^u$. This is used to discuss the degree of repulsiveness in DPPs in terms of $\xi_u$, including Ginibre point processes and other specific parametric models for DPPs.



2012 ◽  
Vol 28 (4) ◽  
pp. 925-932 ◽  
Author(s):  
Kirill Evdokimov ◽  
Halbert White

This note demonstrates that the conditions of Kotlarski’s (1967, Pacific Journal of Mathematics 20(1), 69–76) lemma can be substantially relaxed. In particular, the condition that the characteristic functions of M, U1, and U2 are nonvanishing can be replaced with much weaker conditions: The characteristic function of U1 can be allowed to have real zeros, as long as the derivative of its characteristic function at those points is not also zero; that of U2 can have an isolated number of zeros; and that of M need satisfy no restrictions on its zeros. We also show that Kotlarski’s lemma holds when the tails of U1 are no thicker than exponential, regardless of the zeros of the characteristic functions of U1, U2, or M.



Sign in / Sign up

Export Citation Format

Share Document