scholarly journals A Class of Fractional Degenerate Evolution Equations with Delay

Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1700
Author(s):  
Amar Debbouche ◽  
Vladimir E. Fedorov

We establish a class of degenerate fractional differential equations involving delay arguments in Banach spaces. The system endowed by a given background and the generalized Showalter–Sidorov conditions which are natural for degenerate type equations. We prove the results of local unique solvability by using, mainly, the method of contraction mappings. The obtained theory via its abstract results is applied to the research of initial-boundary value problems for both Scott–Blair and modified Sobolev systems of equations with delays.


2018 ◽  
Vol 21 (1) ◽  
pp. 200-219 ◽  
Author(s):  
Fatma Al-Musalhi ◽  
Nasser Al-Salti ◽  
Erkinjon Karimov

AbstractDirect and inverse source problems of a fractional diffusion equation with regularized Caputo-like counterpart of a hyper-Bessel differential operator are considered. Solutions to these problems are constructed based on appropriate eigenfunction expansions and results on existence and uniqueness are established. To solve the resultant equations, a solution to such kind of non-homogeneous fractional differential equation is also presented.



2011 ◽  
Vol 152 (3) ◽  
pp. 473-496 ◽  
Author(s):  
DAVID A. SMITH

AbstractWe study initial-boundary value problems for linear evolution equations of arbitrary spatial order, subject to arbitrary linear boundary conditions and posed on a rectangular 1-space, 1-time domain. We give a new characterisation of the boundary conditions that specify well-posed problems using Fokas' transform method. We also give a sufficient condition guaranteeing that the solution can be represented using a series.The relevant condition, the analyticity at infinity of certain meromorphic functions within particular sectors, is significantly more concrete and easier to test than the previous criterion, based on the existence of admissible functions.



Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2115
Author(s):  
Yuri Luchko ◽  
Masahiro Yamamoto

In this survey paper, we start with a discussion of the general fractional derivative (GFD) introduced by A. Kochubei in his recent publications. In particular, a connection of this derivative to the corresponding fractional integral and the Sonine relation for their kernels are presented. Then we consider some fractional ordinary differential equations (ODEs) with the GFD including the relaxation equation and the growth equation. The main part of the paper is devoted to the fractional partial differential equations (PDEs) with the GFD. We discuss both the Cauchy problems and the initial-boundary-value problems for the time-fractional diffusion equations with the GFD. In the final part of the paper, some results regarding the inverse problems for the differential equations with the GFD are presented.



Sign in / Sign up

Export Citation Format

Share Document