scholarly journals On the equivalence between Perov fixed point theorem and Banach contraction principle

Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3137-3146 ◽  
Author(s):  
Marija Cvetkovic

There are many results in the fixed point theory that were presented as generalizations of Banach theorem and other well-known fixed point theorems, but later proved equivalent to these results. In this article we prove that Perov?s existence result follows from Banach theorem by using renormization of normal cone and obtained metric. The observed estimations of approximate point given by Perov, could not be obtained from consequences of Banach theorem on metric spaces.

2005 ◽  
Vol 2005 (5) ◽  
pp. 789-801
Author(s):  
Bijendra Singh ◽  
Shishir Jain ◽  
Shobha Jain

Rhoades (1996) proved a fixed point theorem in a boundedD-metric space for a contractive self-map with applications. Here we establish a more general fixed point theorem in an unboundedD-metric space, for two self-maps satisfying a general contractive condition with a restricted domain ofxandy. This has been done by using the notion of semicompatible maps inD-metric space. These results generalize and improve the results of Rhoades (1996), Dhage et al. (2000), and Veerapandi and Rao (1996). These results also underline the necessity and importance of semicompatibility in fixed point theory ofD-metric spaces. All the results of this paper are new.


2017 ◽  
Vol 33 (3) ◽  
pp. 265-274
Author(s):  
MARGARETA-ELIZA BALAZS ◽  

Starting from the results, established in [Albu, M., A fixed point theorem of Maia-Perov type. Studia Univ. Babes¸- Bolyai Math., 23 (1978), No. 1, 76–79] and [Mures¸an, V., Basic problem for Maia-Perov’s fixed point theorem, Seminar on Fixed Point Theory, Babes¸ Bolyai Univ., Cluj-Napoca, (1988), Preprint Nr. 3, pp. 43–48] where fixed point theorems of Maia-Perov type are proved, the main aim of this paper is to extend this results to product metric spaces, using Presiˇ c type operators. An existence, uniqueness and data dependence theorem related to the ´ solution of the system of integral equations of Fredholm type in product metric spaces, is also presented.


Filomat ◽  
2013 ◽  
Vol 27 (7) ◽  
pp. 1259-1268 ◽  
Author(s):  
Margherita Sgroi ◽  
Calogero Vetro

Wardowski [Fixed Point Theory Appl., 2012:94] introduced a new concept of contraction and proved a fixed point theorem which generalizes Banach contraction principle. Following this direction of research, we will present some fixed point results for closed multi-valued F-contractions or multi-valued mappings which satisfy an F-contractive condition of Hardy-Rogers-type, in the setting of complete metric spaces or complete ordered metric spaces. An example and two applications, for the solution of certain functional and integral equations, are given to illustrate the usability of the obtained results.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 488
Author(s):  
Pravin Baradol ◽  
Jelena Vujaković ◽  
Dhananjay Gopal ◽  
Stojan Radenović

In this paper, we provide an approach to establish the Banach contraction principle ( for the case λ ∈ [ 0 , 1 ) ) , Edelstein, Reich, and Meir–Keeler type contractions in the context of graphical rectangular b-metric space. The obtained results not only enrich and improve recent fixed point theorems of this new metric spaces but also provide positive answers to the questions raised by Mudasir Younis et al. (J. Fixed Point Theory Appl., doi:10.1007/s11784-019-0673-3, 2019).


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 273 ◽  
Author(s):  
Salvador Romaguera ◽  
Pedro Tirado

With the help of C-contractions having a fixed point, we obtain a characterization of complete fuzzy metric spaces, in the sense of Kramosil and Michalek, that extends the classical theorem of H. Hu (see “Am. Math. Month. 1967, 74, 436–437”) that a metric space is complete if and only if any Banach contraction on any of its closed subsets has a fixed point. We apply our main result to deduce that a well-known fixed point theorem due to D. Mihet (see “Fixed Point Theory 2005, 6, 71–78”) also allows us to characterize the fuzzy metric completeness.


2018 ◽  
Vol 27 (1) ◽  
pp. 15-20
Author(s):  
VASILE BERINDE ◽  

In a recent paper [Pata, V., A fixed point theorem in metric spaces, J. Fixed Point Theory Appl., 10 (2011), No. 2, 299–305], the author stated and proved a fixed point theorem that is intended to generalize the well known Banach’s contraction mapping principle. In this note we show that the main result in the above paper does not hold at least in two extremal cases for the parameter ε involved in the contraction condition used there. We also present some illustrative examples and related results.


Author(s):  
Jarosław Górnicki

AbstractRan and Reurings (Proc Am Math Soc 132(5):1435–1443, 2003) extended the Banach contraction principle to the setting of partially ordered metric spaces and recently Proinov (J Fixed Point Theory Appl 22:21, 2020) extended and unified many earlier fixed point theorems. In this paper we will present analogous results for the significantly wider class of mappings on preordered metric spaces. We give non-trivial examples of Kannan-type mappings.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3295-3305 ◽  
Author(s):  
Antonella Nastasi ◽  
Pasquale Vetro

Motivated by a problem concerning multi-valued mappings posed by Reich [S. Reich, Some fixed point problems, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 57 (1974) 194-198] and a paper of Jleli and Samet [M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014:38 (2014) 1-8], we consider a new class of multi-valued mappings that satisfy a ?-contractive condition in complete metric spaces and prove some fixed point theorems. These results generalize Reich?s and Mizoguchi-Takahashi?s fixed point theorems. Some examples are given to show the usability of the obtained results.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Chakkrid Klin-eam ◽  
Cholatis Suanoom

Fixed-point theory in complex valued metric spaces has greatly developed in recent times. In this paper, we prove certain common fixed-point theorems for two single-valued mappings in such spaces. The mappings we consider here are assumed to satisfy certain metric inequalities with generalized fixed-point theorems due to Rouzkard and Imdad (2012). This extends and subsumes many results of other authors which were obtained for mappings on complex-valued metric spaces.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 512 ◽  
Author(s):  
Erdal Karapınar ◽  
Panda Kumari ◽  
Durdana Lateef

It is very well known that real-life applications of fixed point theory are restricted with the transformation of the problem in the form of f ( x ) = x . (1) The Knaster–Tarski fixed point theorem underlies various approaches of checking the correctness of programs. (2) The Brouwer fixed point theorem is used to prove the existence of Nash equilibria in games. (3) Dlala et al. proposed a solution for magnetic field problems via the fixed point approach.


Sign in / Sign up

Export Citation Format

Share Document