scholarly journals A New Kernel Estimator of Copulas Based on Beta Quantile Transformations

Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1078
Author(s):  
Catalina Bolancé ◽  
Carlos Alberto Acuña

A copula is a multivariate cumulative distribution function with marginal distributions Uniform(0,1). For this reason, a classical kernel estimator does not work and this estimator needs to be corrected at boundaries, which increases the difficulty of the estimation and, in practice, the bias boundary correction might not provide the desired improvement. A quantile transformation of marginals is a way to improve the classical kernel approach. This paper shows a Beta quantile transformation to be optimal and analyses a kernel estimator based on this transformation. Furthermore, the basic properties that allow the new estimator to be used for inference on extreme value copulas are tested. The results of a simulation study show how the new nonparametric estimator improves alternative kernel estimators of copulas. We illustrate our proposal with a financial risk data analysis.

2021 ◽  
Vol 10 (12) ◽  
pp. 3679-3697
Author(s):  
N. Almi ◽  
A. Sayah

In this paper, two kernel cumulative distribution function estimators are introduced and investigated in order to improve the boundary effects, we will restrict our attention to the right boundary. The first estimator uses a self-elimination between modify theoretical Bias term and the classical kernel estimator itself. The basic technique of construction the second estimator is kind of a generalized reflection method involving reflection a transformation of the observed data. The theoretical properties of our estimators turned out that the Bias has been reduced to the second power of the bandwidth, simulation studies and two real data applications were carried out to check these phenomena and are conducted that the proposed estimators are better than the existing boundary correction methods.


Intersections ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 33-43
Author(s):  
Toto Hermawan ◽  
Dwi Nurrohmah ◽  
Ismi Fathul Jannah

Multiple myeloma is an infectious disease characterized by the accumulation of abnormal plasma cells, a type of white blood cell, in the bone marrow. The main objective of this data analysis is to investigate the effect of Bun, Ca, Pcells and Protein risk factors on the survival time of multiple myeloma patients from diagnosis to death. In the survival data analysis, the observed random variable T is the time needed to achieve success. To explain a random variable, the cumulative distribution function or the probability density function can be used. In survival analysis, the function of the random variable that becomes important is the survival function and the hazard function which can be derived using the cumulative distribution function or the probability density function. In general, it is difficult to determine the survival function or hazard function of a population group with certainty. However, the survival function or hazard function can still be approximated by certain estimation methods. The Kaplan-Meier method can be used to find estimators of the survival function of a population. Meanwhile, to find the estimator of the cumuative hazard function, the Nelson-Aalen method can be used. From the variables studied, it turned out that the one that gave the most significant effect was the Bun variable, namely blood urea nitrogen levels using both the exponential and weibull distribution. However, by using the weibull distribution, the presence of Bence Jones Protein in urine also has a quite real effect


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 899 ◽  
Author(s):  
Yolanda M. Gómez ◽  
Emilio Gómez-Déniz ◽  
Osvaldo Venegas ◽  
Diego I. Gallardo ◽  
Héctor W. Gómez

In this article, we study an extension of the sinh Cauchy model in order to obtain asymmetric bimodality. The behavior of the distribution may be either unimodal or bimodal. We calculate its cumulative distribution function and use it to carry out quantile regression. We calculate the maximum likelihood estimators and carry out a simulation study. Two applications are analyzed based on real data to illustrate the flexibility of the distribution for modeling unimodal and bimodal data.


Author(s):  
RONALD R. YAGER

We look at the issue of obtaining a variance like measure associated with probability distributions over ordinal sets. We call these dissonance measures. We specify some general properties desired in these dissonance measures. The centrality of the cumulative distribution function in formulating the concept of dissonance is pointed out. We introduce some specific examples of measures of dissonance.


2017 ◽  
Vol 20 (5) ◽  
pp. 939-951
Author(s):  
Amal Almarwani ◽  
Bashair Aljohani ◽  
Rasha Almutairi ◽  
Nada Albalawi ◽  
Alya O. Al Mutairi

Sign in / Sign up

Export Citation Format

Share Document