scholarly journals Identifying the Main Risk Factors for Cardiovascular Diseases Prediction Using Machine Learning Algorithms

Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2537
Author(s):  
Luis Rolando Guarneros-Nolasco ◽  
Nancy Aracely Cruz-Ramos ◽  
Giner Alor-Hernández ◽  
Lisbeth Rodríguez-Mazahua ◽  
José Luis Sánchez-Cervantes

Cardiovascular Diseases (CVDs) are a leading cause of death globally. In CVDs, the heart is unable to deliver enough blood to other body regions. As an effective and accurate diagnosis of CVDs is essential for CVD prevention and treatment, machine learning (ML) techniques can be effectively and reliably used to discern patients suffering from a CVD from those who do not suffer from any heart condition. Namely, machine learning algorithms (MLAs) play a key role in the diagnosis of CVDs through predictive models that allow us to identify the main risks factors influencing CVD development. In this study, we analyze the performance of ten MLAs on two datasets for CVD prediction and two for CVD diagnosis. Algorithm performance is analyzed on top-two and top-four dataset attributes/features with respect to five performance metrics –accuracy, precision, recall, f1-score, and roc-auc—using the train-test split technique and k-fold cross-validation. Our study identifies the top-two and top-four attributes from CVD datasets analyzing the performance of the accuracy metrics to determine that they are the best for predicting and diagnosing CVD. As our main findings, the ten ML classifiers exhibited appropriate diagnosis in classification and predictive performance with accuracy metric with top-two attributes, identifying three main attributes for diagnosis and prediction of a CVD such as arrhythmia and tachycardia; hence, they can be successfully implemented for improving current CVD diagnosis efforts and help patients around the world, especially in regions where medical staff is lacking.

Author(s):  
Luis Rolando Guarneros-Nolasco ◽  
Nancy Aracely Cruz-Ramos ◽  
Giner Alor-Hernández ◽  
Lisbeth Rodríguez-Mazahua ◽  
José Luis Sánchez-Cervantes

CVDs are a leading cause of death globally. In CVDs, the heart is unable to deliver enough blood to other body regions. Since effective and accurate diagnosis of CVDs is essential for CVD prevention and treatment, machine learning (ML) techniques can be effectively and reliably used to discern patients suffering from a CVD from those who do not suffer from any heart condition. Namely, machine learning algorithms (MLAs) play a key role in the diagnosis of CVDs through predictive models that allow us to identify the main risks factors influencing CVD development. In this study, we analyze the performance of ten MLAs on two datasets for CVD prediction and two for CVD diagnosis. Algorithm performance is analyzed on top-two and top-four dataset attributes/features with respect to five performance metrics –accuracy, precision, recall, f1-score, and roc-auc – using the train-test split technique and k-fold cross-validation. Our study identifies the top two and four attributes from each CVD diagnosis/prediction dataset. As our main findings, the ten MLAs exhibited appropriate diagnosis and predictive performance; hence, they can be successfully implemented for improving current CVD diagnosis efforts and help patients around the world, especially in regions where medical staff is lacking.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chengmao Zhou ◽  
Junhong Hu ◽  
Ying Wang ◽  
Mu-Huo Ji ◽  
Jianhua Tong ◽  
...  

AbstractTo explore the predictive performance of machine learning on the recurrence of patients with gastric cancer after the operation. The available data is divided into two parts. In particular, the first part is used as a training set (such as 80% of the original data), and the second part is used as a test set (the remaining 20% of the data). And we use fivefold cross-validation. The weight of recurrence factors shows the top four factors are BMI, Operation time, WGT and age in order. In training group:among the 5 machine learning models, the accuracy of gbm was 0.891, followed by gbm algorithm was 0.876; The AUC values of the five machine learning algorithms are from high to low as forest (0.962), gbm (0.922), GradientBoosting (0.898), DecisionTree (0.790) and Logistic (0.748). And the precision of the forest is the highest 0.957, followed by the GradientBoosting algorithm (0.878). At the same time, in the test group is as follows: the highest accuracy of Logistic was 0.801, followed by forest algorithm and gbm; the AUC values of the five algorithms are forest (0.795), GradientBoosting (0.774), DecisionTree (0.773), Logistic (0.771) and gbm (0.771), from high to low. Among the five machine learning algorithms, the highest precision rate of Logistic is 1.000, followed by the gbm (0.487). Machine learning can predict the recurrence of gastric cancer patients after an operation. Besides, the first four factors affecting postoperative recurrence of gastric cancer were BMI, Operation time, WGT and age.


Author(s):  
Michael McCartney ◽  
Matthias Haeringer ◽  
Wolfgang Polifke

Abstract This paper examines and compares commonly used Machine Learning algorithms in their performance in interpolation and extrapolation of FDFs, based on experimental and simulation data. Algorithm performance is evaluated by interpolating and extrapolating FDFs and then the impact of errors on the limit cycle amplitudes are evaluated using the xFDF framework. The best algorithms in interpolation and extrapolation were found to be the widely used cubic spline interpolation, as well as the Gaussian Processes regressor. The data itself was found to be an important factor in defining the predictive performance of a model, therefore a method of optimally selecting data points at test time using Gaussian Processes was demonstrated. The aim of this is to allow a minimal amount of data points to be collected while still providing enough information to model the FDF accurately. The extrapolation performance was shown to decay very quickly with distance from the domain and so emphasis should be put on selecting measurement points in order to expand the covered domain. Gaussian Processes also give an indication of confidence on its predictions and is used to carry out uncertainty quantification, in order to understand model sensitivities. This was demonstrated through application to the xFDF framework.


Author(s):  
Sudeep D. Thepade ◽  
Gaurav Ramnani

Melanoma is a mortal type of skin cancer. Early detection of melanoma significantly improves the patient’s chances of survival. Detection of melanoma at an early juncture demands expert doctors. The scarcity of such expert doctors is a major issue with healthcare systems globally. Computer-assisted diagnostics may prove helpful in this case. This paper proposes a health informatics system for melanoma identification using machine learning with dermoscopy skin images. In the proposed method, the features of dermoscopy skin images are extracted using the Haar wavelet pyramid various levels. These features are employed to train machine learning algorithms and ensembles for melanoma identification. The consideration of higher levels of Haar Wavelet Pyramid helps speed up the identification process. It is observed that the performance gradually improves from the Haar wavelet pyramid level 4x4 to 16x16, and shows marginal improvement further. The ensembles of machine learning algorithms have shown a boost in performance metrics compared to the use of individual machine learning algorithms.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
André F. M. Batista ◽  
Carmen S. G. Diniz ◽  
Eliana A. Bonilha ◽  
Ichiro Kawachi ◽  
Alexandre D. P. Chiavegatto Filho

Abstract Background Recent decreases in neonatal mortality have been slower than expected for most countries. This study aims to predict the risk of neonatal mortality using only data routinely available from birth records in the largest city of the Americas. Methods A probabilistic linkage of every birth record occurring in the municipality of São Paulo, Brazil, between 2012 e 2017 was performed with the death records from 2012 to 2018 (1,202,843 births and 447,687 deaths), and a total of 7282 neonatal deaths were identified (a neonatal mortality rate of 6.46 per 1000 live births). Births from 2012 and 2016 (N = 941,308; or 83.44% of the total) were used to train five different machine learning algorithms, while births occurring in 2017 (N = 186,854; or 16.56% of the total) were used to test their predictive performance on new unseen data. Results The best performance was obtained by the extreme gradient boosting trees (XGBoost) algorithm, with a very high AUC of 0.97 and F1-score of 0.55. The 5% births with the highest predicted risk of neonatal death included more than 90% of the actual neonatal deaths. On the other hand, there were no deaths among the 5% births with the lowest predicted risk. There were no significant differences in predictive performance for vulnerable subgroups. The use of a smaller number of variables (WHO’s five minimum perinatal indicators) decreased overall performance but the results still remained high (AUC of 0.91). With the addition of only three more variables, we achieved the same predictive performance (AUC of 0.97) as using all the 23 variables originally available from the Brazilian birth records. Conclusion Machine learning algorithms were able to identify with very high predictive performance the neonatal mortality risk of newborns using only routinely collected data.


Author(s):  
Munder Abdulatef Al-Hashem ◽  
Ali Mohammad Alqudah ◽  
Qasem Qananwah

Knowledge extraction within a healthcare field is a very challenging task since we are having many problems such as noise and imbalanced datasets. They are obtained from clinical studies where uncertainty and variability are popular. Lately, a wide number of machine learning algorithms are considered and evaluated to check their validity of being used in the medical field. Usually, the classification algorithms are compared against medical experts who are specialized in certain disease diagnoses and provide an effective methodological evaluation of classifiers by applying performance metrics. The performance metrics contain four criteria: accuracy, sensitivity, and specificity forming the confusion matrix of each used algorithm. We have utilized eight different well-known machine learning algorithms to evaluate their performances in six different medical datasets. Based on the experimental results we conclude that the XGBoost and K-Nearest Neighbor classifiers were the best overall among the used datasets and signs can be used for diagnosing various diseases.


2021 ◽  
Vol 10 (5) ◽  
pp. 2857-2865
Author(s):  
Moanda Diana Pholo ◽  
Yskandar Hamam ◽  
Abdel Baset Khalaf ◽  
Chunling Du

Available literature reports several lymphoma cases misdiagnosed as tuberculosis, especially in countries with a heavy TB burden. This frequent misdiagnosis is due to the fact that the two diseases can present with similar symptoms. The present study therefore aims to analyse and explore TB as well as lymphoma case reports using Natural Language Processing tools and evaluate the use of machine learning to differentiate between the two diseases. As a starting point in the study, case reports were collected for each disease using web scraping. Natural language processing tools and text clustering were then used to explore the created dataset. Finally, six machine learning algorithms were trained and tested on the collected data, which contained 765 lymphoma and 546 tuberculosis case reports. Each method was evaluated using various performance metrics. The results indicated that the multi-layer perceptron model achieved the best accuracy (93.1%), recall (91.9%) and precision score (93.7%), thus outperforming other algorithms in terms of correctly classifying the different case reports.


2021 ◽  
Author(s):  
Nuno Moniz ◽  
Susana Barbosa

<p>The Dansgaard-Oeschger (DO) events are one of the most striking examples of abrupt climate change in the Earth's history, representing temperature oscillations of about 8 to 16 degrees Celsius within a few decades. DO events have been studied extensively in paleoclimatic records, particularly in ice core proxies. Examples include the Greenland NGRIP record of oxygen isotopic composition.<br>This work addresses the anticipation of DO events using machine learning algorithms. We consider the NGRIP time series from 20 to 60 kyr b2k with the GICC05 timescale and 20-year temporal resolution. Forecasting horizons range from 0 (nowcasting) to 400 years. We adopt three different machine learning algorithms (random forests, support vector machines, and logistic regression) in training windows of 5 kyr. We perform validation on subsequent test windows of 5 kyr, based on timestamps of previous DO events' classification in Greenland by Rasmussen et al. (2014). We perform experiments with both sliding and growing windows.<br>Results show that predictions on sliding windows are better overall, indicating that modelling is affected by non-stationary characteristics of the time series. The three algorithms' predictive performance is similar, with a slightly better performance of random forest models for shorter forecast horizons. The prediction models' predictive capability decreases as the forecasting horizon grows more extensive but remains reasonable up to 120 years. Model performance deprecation is mostly related to imprecision in accurately determining the start and end time of events and identifying some periods as DO events when such is not valid.</p>


2019 ◽  
Vol 31 (4) ◽  
pp. 568-578 ◽  
Author(s):  
Anshit Goyal ◽  
Che Ngufor ◽  
Panagiotis Kerezoudis ◽  
Brandon McCutcheon ◽  
Curtis Storlie ◽  
...  

OBJECTIVENonhome discharge and unplanned readmissions represent important cost drivers following spinal fusion. The authors sought to utilize different machine learning algorithms to predict discharge to rehabilitation and unplanned readmissions in patients receiving spinal fusion.METHODSThe authors queried the 2012–2013 American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) for patients undergoing cervical or lumbar spinal fusion. Outcomes assessed included discharge to nonhome facility and unplanned readmissions within 30 days after surgery. A total of 7 machine learning algorithms were evaluated. Predictive hierarchical clustering of procedure codes was used to increase model performance. Model performance was evaluated using overall accuracy and area under the receiver operating characteristic curve (AUC), as well as sensitivity, specificity, and positive and negative predictive values. These performance metrics were computed for both the imputed and unimputed (missing values dropped) datasets.RESULTSA total of 59,145 spinal fusion cases were analyzed. The incidence rates of discharge to nonhome facility and 30-day unplanned readmission were 12.6% and 4.5%, respectively. All classification algorithms showed excellent discrimination (AUC > 0.80, range 0.85–0.87) for predicting nonhome discharge. The generalized linear model showed comparable performance to other machine learning algorithms. By comparison, all models showed poorer predictive performance for unplanned readmission, with AUC ranging between 0.63 and 0.66. Better predictive performance was noted with models using imputed data.CONCLUSIONSIn an analysis of patients undergoing spinal fusion, multiple machine learning algorithms were found to reliably predict nonhome discharge with modest performance noted for unplanned readmissions. These results provide early evidence regarding the feasibility of modern machine learning classifiers in predicting these outcomes and serve as possible clinical decision support tools to facilitate shared decision making.


Sign in / Sign up

Export Citation Format

Share Document