scholarly journals A New Quantile Regression Model and Its Diagnostic Analytics for a Weibull Distributed Response with Applications

Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2768
Author(s):  
Luis Sánchez ◽  
Víctor Leiva ◽  
Helton Saulo ◽  
Carolina Marchant ◽  
José M. Sarabia

Standard regression models focus on the mean response based on covariates. Quantile regression describes the quantile for a response conditioned to values of covariates. The relevance of quantile regression is even greater when the response follows an asymmetrical distribution. This relevance is because the mean is not a good centrality measure to resume asymmetrically distributed data. In such a scenario, the median is a better measure of the central tendency. Quantile regression, which includes median modeling, is a better alternative to describe asymmetrically distributed data. The Weibull distribution is asymmetrical, has positive support, and has been extensively studied. In this work, we propose a new approach to quantile regression based on the Weibull distribution parameterized by its quantiles. We estimate the model parameters using the maximum likelihood method, discuss their asymptotic properties, and develop hypothesis tests. Two types of residuals are presented to evaluate the model fitting to data. We conduct Monte Carlo simulations to assess the performance of the maximum likelihood estimators and residuals. Local influence techniques are also derived to analyze the impact of perturbations on the estimated parameters, allowing us to detect potentially influential observations. We apply the obtained results to a real-world data set to show how helpful this type of quantile regression model is.

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1938
Author(s):  
Diego I. Gallardo ◽  
Marcelo Bourguignon ◽  
Christian E. Galarza ◽  
Héctor W. Gómez

In this paper, we introduce a novel parametric quantile regression model for asymmetric response variables, where the response variable follows a power skew-normal distribution. By considering a new convenient parametrization, these distribution results are very useful for modeling different quantiles of a response variable on the real line. The maximum likelihood method is employed to estimate the model parameters. Besides, we present a local influence study under different perturbation settings. Some numerical results of the estimators in finite samples are illustrated. In order to illustrate the potential for practice of our model, we apply it to a real dataset.


2009 ◽  
Vol 6 (4) ◽  
pp. 705-710
Author(s):  
Baghdad Science Journal

This Research Tries To Investigate The Problem Of Estimating The Reliability Of Two Parameter Weibull Distribution,By Using Maximum Likelihood Method, And White Method. The Comparison Is done Through Simulation Process Depending On Three Choices Of Models (?=0.8 , ß=0.9) , (?=1.2 , ß=1.5) and (?=2.5 , ß=2). And Sample Size n=10 , 70, 150 We Use the Statistical Criterion Based On the Mean Square Error (MSE) For Comparison Amongst The Methods.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1000 ◽  
Author(s):  
Luis Sánchez ◽  
Víctor Leiva ◽  
Manuel Galea ◽  
Helton Saulo

In the present paper, a novel spatial quantile regression model based on the Birnbaum–Saunders distribution is formulated. This distribution has been widely studied and applied in many fields. To formulate such a spatial model, a parameterization of the multivariate Birnbaum–Saunders distribution, where one of its parameters is associated with the quantile of the respective marginal distribution, is established. The model parameters are estimated by the maximum likelihood method. Finally, a data set is applied for illustrating the formulated model.


2017 ◽  
Vol 8 (2) ◽  
pp. 179 ◽  
Author(s):  
Suyitno Suyitno

In this study, a univariate Weibull regression model is discussed. The Weibull regression is a regression model developed from the Weibull distribution, that is the Weibull distribution depending on the covariates or the regression parameters. The univariate Weibull regression (UWR) model can involve the survival function model and the mean model of the response variable with the scale parameter stated in the terms of the regression parameters. The aim of this study is to estimate the UWR model parameters using the maximum likelihood estimation (MLE) method, and to test the regression parameters. The result shows that the closed form of the maximum likelihood estimator can not be found analytically, and it can be approximed by using the Newton-Raphson iterative method. The regression parameters testing involves simultaneous and partial test. The test statistic for simultaneous test is Wilk's likelihood ratio. Wilk statistic follows Chi-square distribution, which can be derived from the likelihood ratio test (LRT) method. The test statistic for partial test is Wald and it follows standard normal distribution. The alternative test statistik for partial test is squared of Wald statistic, where it follows Chi-square distribution with one degree of freedom.


2021 ◽  
pp. 1-29
Author(s):  
Marzieh Shahmandi ◽  
Paul Wilson ◽  
Mike Thelwall

Abstract Quantile regression presents a complete picture of the effects on the location, scale, and shape of the dependent variable at all points, not just the mean. We focus on two challenges for citation count analysis by quantile regression: discontinuity and substantial mass points at lower counts. A Bayesian hurdle quantile regression model for count data with a substantial mass point at zero was proposed by King and Song (2019). It uses quantile regression for modeling the nonzero data and logistic regression for modeling the probability of zeros versus nonzeros. We show that substantial mass points for low citation counts will nearly certainly also affect parameter estimation in the quantile regression part of the model, similar to a mass point at zero. We update the King and Song model by shifting the hurdle point past the main mass points. This model delivers more accurate quantile regression for moderately to highly cited articles, especially at quantiles corresponding to values just beyond the mass points, and enables estimates of the extent to which factors influence the chances that an article will be low cited. To illustrate the potential of this method, it is applied to simulated citation counts and data from Scopus. Peer Review https://publons.com/publon/10.1162/qss_a_00147


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Mohammed M. A. Almazah ◽  
Muhammad Ismail

Several studies have considered various scheduling methods and reliability functions to determine the optimum maintenance time. These methods and functions correspond to the lowest cost by using the maximum likelihood estimator to evaluate the model parameters. However, this paper aims to estimate the parameters of the two-parameter Weibull distribution (α, β). The maximum likelihood estimation method, modified linear exponential loss function, and Wyatt-based regression method are used for the estimation of the parameters. Minimum mean square error (MSE) criterion is used to evaluate the relative efficiency of the estimators. The comparison of the different parameter estimation methods is conducted, and the efficiency of these methods is observed, both mathematically and experimentally. The simulation study is conducted for comparison of samples sizes (10, 50, 100, 150) based on the mean square error (MSE). It is concluded that the maximum likelihood method was found to be the most efficient method for all sample sizes used in the research because it achieved the least MSE compared with other methods.


2019 ◽  
Vol 8 (2) ◽  
pp. 146
Author(s):  
Saeed Al-mualim

A new extension of the Poisson Inverse Weibull distribution is derived and studied in details. Number of structural mathematical properties are derived. We used the well-known maximum likelihood method for estimating the model parameters. The new model is applied for modeling some real data sets to prove its importance and flexibility empirically.


2012 ◽  
Vol 57 (1) ◽  
Author(s):  
SEYED EHSAN SAFFAR ◽  
ROBIAH ADNAN ◽  
WILLIAM GREENE

A Poisson model typically is assumed for count data. In many cases, there are many zeros in the dependent variable and because of these many zeros, the mean and the variance values of the dependent variable are not the same as before. In fact, the variance value of the dependent variable will be much more than the mean value of the dependent variable and this is called over–dispersion. Therefore, Poisson model is not suitable anymore for this kind of data because of too many zeros. Thus, it is suggested to use a hurdle Poisson regression model to overcome over–dispersion problem. Furthermore, the response variable in such cases is censored for some values. In this paper, a censored hurdle Poisson regression model is introduced on count data with many zeros. In this model, we consider a response variable and one or more than one explanatory variables. The estimation of regression parameters using the maximum likelihood method is discussed and the goodness–of–fit for the regression model is examined. We study the effects of right censoring on estimated parameters and their standard errors via an example.


Sign in / Sign up

Export Citation Format

Share Document