scholarly journals Best estimation for the Reliability of 2-parameter Weibull Distribution

2009 ◽  
Vol 6 (4) ◽  
pp. 705-710
Author(s):  
Baghdad Science Journal

This Research Tries To Investigate The Problem Of Estimating The Reliability Of Two Parameter Weibull Distribution,By Using Maximum Likelihood Method, And White Method. The Comparison Is done Through Simulation Process Depending On Three Choices Of Models (?=0.8 , ß=0.9) , (?=1.2 , ß=1.5) and (?=2.5 , ß=2). And Sample Size n=10 , 70, 150 We Use the Statistical Criterion Based On the Mean Square Error (MSE) For Comparison Amongst The Methods.

2014 ◽  
Vol 2014 ◽  
pp. 1-3
Author(s):  
N. Abbasi ◽  
A. Namju ◽  
N. Safari

The random variable Zn,α=Y1+2αY2+⋯+nαYn, with α∈ℝ and Y1,Y2,…  being independent exponentially distributed random variables with mean one, is considered. Van Leeuwaarden and Temme (2011) attempted to determine good approximation of the distribution of Zn,α. The main problem is estimating the parameter α that has the main state in applicable research. In this paper we show that estimating the parameter α by using the relation between α and mode is available. The mean square error values are obtained for estimating α by mode, moment method, and maximum likelihood method.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Mohammed M. A. Almazah ◽  
Muhammad Ismail

Several studies have considered various scheduling methods and reliability functions to determine the optimum maintenance time. These methods and functions correspond to the lowest cost by using the maximum likelihood estimator to evaluate the model parameters. However, this paper aims to estimate the parameters of the two-parameter Weibull distribution (α, β). The maximum likelihood estimation method, modified linear exponential loss function, and Wyatt-based regression method are used for the estimation of the parameters. Minimum mean square error (MSE) criterion is used to evaluate the relative efficiency of the estimators. The comparison of the different parameter estimation methods is conducted, and the efficiency of these methods is observed, both mathematically and experimentally. The simulation study is conducted for comparison of samples sizes (10, 50, 100, 150) based on the mean square error (MSE). It is concluded that the maximum likelihood method was found to be the most efficient method for all sample sizes used in the research because it achieved the least MSE compared with other methods.


Author(s):  
Ahmed Samir Badawi ◽  
Siti Hajar Yusoff ◽  
Alhareth Mohammed Zyoud ◽  
Sheroz Khan ◽  
Aisha Hashim ◽  
...  

This study aims to determine the potential of wind energy in the mediterranean coastal plain of Palestine. The parameters of the Weibull distribution were calculated on basis of wind speed data. Accordingly, two approaches were employed: analysis of a set of actual time series data and theoretical Weibull probability function. In this analysis, the parameters Weibull shape factor ‘<em>k</em>’ and the Weibull scale factor ‘<em>c</em>’ were adopted. These suitability values were calculated using the following popular methods: method of moments (MM), standard deviation method (STDM), empirical method (EM), maximum likelihood method (MLM), modified maximum likelihood method (MMLM), second modified maximum likelihood method (SMMLM), graphical method (GM), least mean square method (LSM) and energy pattern factor method (EPF). The performance of these numerical methods was tested by root mean square error (RMSE), index of agreement (IA), Chi-square test (X<sup>2</sup>), mean absolute percentage error (MAPE) and relative root mean square error (RRMSE) to estimate the percentage of error. Among the prediction techniques. The EPF exhibited the greatest accuracy performance followed by MM and MLM, whereas the SMMLM exhibited the worst performance. The RMSE achieved the best prediction accuracy, whereas the RRMSE attained the worst prediction accuracy.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 62 ◽  
Author(s):  
Autcha Araveeporn

This paper compares the frequentist method that consisted of the least-squares method and the maximum likelihood method for estimating an unknown parameter on the Random Coefficient Autoregressive (RCA) model. The frequentist methods depend on the likelihood function that draws a conclusion from observed data by emphasizing the frequency or proportion of the data namely least squares and maximum likelihood methods. The method of least squares is often used to estimate the parameter of the frequentist method. The minimum of the sum of squared residuals is found by setting the gradient to zero. The maximum likelihood method carries out the observed data to estimate the parameter of a probability distribution by maximizing a likelihood function under the statistical model, while this estimator is obtained by a differential parameter of the likelihood function. The efficiency of two methods is considered by average mean square error for simulation data, and mean square error for actual data. For simulation data, the data are generated at only the first-order models of the RCA model. The results have shown that the least-squares method performs better than the maximum likelihood. The average mean square error of the least-squares method shows the minimum values in all cases that indicated their performance. Finally, these methods are applied to the actual data. The series of monthly averages of the Stock Exchange of Thailand (SET) index and daily volume of the exchange rate of Baht/Dollar are considered to estimate and forecast based on the RCA model. The result shows that the least-squares method outperforms the maximum likelihood method.


2017 ◽  
Vol 4 (2) ◽  
pp. 8-14
Author(s):  
J. A. Labban ◽  
H. H. Depheal

"This paper some of different methods to estimate the parameters of the 2-Paramaters Weibull distribution such as (Maximum likelihood Estimation, Moments, Least Squares, Term Omission). Mean square error will be considered to compare methods fits in case to select the best one. There by simulation will be implemented to generate different random sample of the 2-parameters Weibull distribution, those contain (n=10, 50, 100, 200) iteration each 1000 times."


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2768
Author(s):  
Luis Sánchez ◽  
Víctor Leiva ◽  
Helton Saulo ◽  
Carolina Marchant ◽  
José M. Sarabia

Standard regression models focus on the mean response based on covariates. Quantile regression describes the quantile for a response conditioned to values of covariates. The relevance of quantile regression is even greater when the response follows an asymmetrical distribution. This relevance is because the mean is not a good centrality measure to resume asymmetrically distributed data. In such a scenario, the median is a better measure of the central tendency. Quantile regression, which includes median modeling, is a better alternative to describe asymmetrically distributed data. The Weibull distribution is asymmetrical, has positive support, and has been extensively studied. In this work, we propose a new approach to quantile regression based on the Weibull distribution parameterized by its quantiles. We estimate the model parameters using the maximum likelihood method, discuss their asymptotic properties, and develop hypothesis tests. Two types of residuals are presented to evaluate the model fitting to data. We conduct Monte Carlo simulations to assess the performance of the maximum likelihood estimators and residuals. Local influence techniques are also derived to analyze the impact of perturbations on the estimated parameters, allowing us to detect potentially influential observations. We apply the obtained results to a real-world data set to show how helpful this type of quantile regression model is.


2011 ◽  
Vol 110-116 ◽  
pp. 4240-4245
Author(s):  
Jun Zhao Zhang ◽  
Cong Ling Wang ◽  
Xue Fa Fang

The reliability of the pneumatic cylinder was investigated by routine life test. The results show that the failures of the pneumatic cylinder can be described as a Weibull distribution and fatigue fracture of the aluminum end cap and the head of install bolt is the major failure for the pneumatic cylinder. The pneumatic cylinder life distribution parameters were estimated by the median rank method in combination with maximum likelihood method. The distribution model for the reliability of the pneumatic cylinder was also proposed here.


2021 ◽  
pp. 0309524X2199996
Author(s):  
Rajesh Kumar ◽  
Arun Kumar

Weibull distribution is an extensively used statistical distribution for analyzing wind speed and determining energy potential studies. Estimation of the wind speed distribution parameter is essential as it significantly affects the success of Weibull distribution application to wind energy. Various estimation methods viz. graphical method, moment method (MM), maximum likelihood method (ML), modified maximum likelihood method, and energy pattern factor method or power density method have been presented in various reported research studies for accurate estimation of distribution parameters. ML is the most preferred approach to study the parameter estimation. ML works on the principle of forming a likelihood function and maximizing the function for parameter estimation. ML generally uses the numerical based iterative method, such as Newton–Raphson. However, the iterative methods proposed in the literature are generally computationally intensive. In this paper, an efficient technique utilizing differential evolution (DE) algorithm to enhance the estimation accuracy of maximum likelihood estimation has been presented. The [Formula: see text] of GA-Weibull, SA-Weibull, and DE-Weibull is 0.958, 0.953, and 0.973 respectively, and value of RMSE of DE-Weibull 0.0083, GA-Weibull (0.0104), and SA-Weibull (0.0110), for the yearly wind speed data are obtained. The lowest root mean square error and larger regression value for both monthly and yearly wind speed data indicate that the DE-Weibull distribution has the best goodness of fit and advocate the DE algorithm for the parameter estimation.


2013 ◽  
Vol 12 (2) ◽  
pp. 51
Author(s):  
S. FAJARIYAH ◽  
H. SUMARNO ◽  
N. K. K. ARDANA

Up till now, models of demography mathematics usually use discrete approximation. This research will use continue approximation agree with demography characteristic that always change every times.  The Maximum Likelihood method is chosen by using five distributions. There are two data that use i.e. hypothetic data and life table data of Banten. The result of hypothetic data shows that if we choose real distribution, it will produce the good value of 2 R , whereas with survival data of Banten. The result shows that Weibull distribution is the best from another distributions. Keywords: survival function, maximum likelihood method.


Sign in / Sign up

Export Citation Format

Share Document