scholarly journals Artificial Intelligence for Stability Control of Actuated In–Wheel Electric Vehicles with CarSim® Validation

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3120
Author(s):  
Riccardo Cespi ◽  
Renato Galluzzi ◽  
Ricardo A. Ramirez-Mendoza ◽  
Stefano Di Gennaro

This paper presents an active controller for electric vehicles in which active front steering and torque vectoring are control actions combined to improve the vehicle driving safety. The electric powertrain consists of four independent in–wheel electric motors situated on each corner. The control approach relies on an inverse optimal controller based on a neural network identifier of the vehicle plant. Moreover, to minimize the number of sensors needed for control purposes, the authors present a discrete–time reduced–order state observer for the estimation of vehicle lateral and roll dynamics. The use of a neural network identifier presents some interesting advantages. Notably, unlike standard strategies, the proposed approach avoids the use of tire lateral forces or Pacejka’s tire parameters. In fact, the neural identification provides an input–affine model in which these quantities are absorbed by neural synaptic weights adapted online by an extended Kalman filter. From a practical standpoint, this eliminates the need of additional sensors, model tuning, or estimation stages. In addition, the yaw angle command given by the controller is converted into electric motor torques in order to ensure safe driving conditions. The mathematical models used to describe the electric machines are able to reproduce the dynamic behavior of Elaphe M700 in–wheel electric motors. Finally, quality and performances of the proposed control strategy are discussed in simulation, using a CarSim® full vehicle model running through a double–lane change maneuver.

Author(s):  
Zheng-Gang Lu ◽  
Xiao-Jie Sun ◽  
Jun-Qi Yang

As the well-known difficulties are that feedback signals are not easy and economical measurement in practice for active control, this paper presents a study of state estimation for active control of independently rotating wheels (IRW) based on observers. The reduced-order observer and high-order sliding mode observer are used to provide reliable and accurate estimations of the wheel pair state and track curvature using practical sensors. This proposed method uses less sensors than the one of previous studies. Furthermore, lateral accelerator and yaw velocity sensors (gyros) are economical and available for active steering and stability control system to obtain the required feedback signals. The wheels’ relative rotational speed, track curvature and yaw angle of wheelsets are the feedback signals for IRW active control approach. Computer simulations are used to verify the effectiveness of proposed methods and assess control performance in stability and negotiation.


2013 ◽  
Vol 328 ◽  
pp. 639-643
Author(s):  
Wei Zhao ◽  
Ning Ning Wang ◽  
Yan Yan Duan ◽  
Jian Guo Xi

Article on the basis of analysis the impact of changes on the braking force in the tire vertical load and slip angle when the car turns, using the generated neural network force model of the tire, to find the optimum value of the slip ratio of the tire under different parameters. For the case of deviating from the expected running track when the car curve traveling. It puts forward the control strategy of using yaw moment technology to control vehicle stability, vehicle stability fuzzy controller is designed, cars driving in curve conditions are simulated. The results showed that the use of neural network seeks to control of identification of the tire characteristics and longitudinal forces optimal slip rate, can reduce the risk of deviations from the expected running track when cars driving in curve, improve tracking ability of the car driving in curve, it proposed the stability control method for improve driving safety has a certain significance.


2021 ◽  
Vol 12 (1) ◽  
pp. 6
Author(s):  
Alexander Koch ◽  
Tim Bürchner ◽  
Thomas Herrmann ◽  
Markus Lienkamp

Electrification and automatization may change the environmental impact of vehicles. Current eco-driving approaches for electric vehicles fit the electric power of the motor by quadratic functions and are limited to powertrains with one motor and single-speed transmission or use computationally expensive algorithms. This paper proposes an online nonlinear algorithm, which handles the non-convex power demand of electric motors. Therefore, this algorithm allows the simultaneous optimization of speed profile and powertrain operation for electric vehicles with multiple motors and multiple gears. We compare different powertrain topologies in a free-flow scenario and a car-following scenario. Dynamic Programming validates the proposed algorithm. Optimal speed profiles alter for different powertrain topologies. Powertrains with multiple gears and motors require less energy during eco-driving. Furthermore, the powertrain-dependent correlations between jerk restriction and energy consumption are shown.


Actuators ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 122
Author(s):  
Dejun Yin ◽  
Junjie Wang ◽  
Jinjian Du ◽  
Gang Chen ◽  
Jia-Sheng Hu

Torque distribution control is a key technique for four-wheel independent-drive electric vehicles because it significantly affects vehicle stability and handling performance, especially under extreme driving conditions. This paper, which focuses on the global yaw moment generated by both the longitudinal and the lateral tire forces, proposes a new distribution control to allocate driving torques to four-wheel motors. The proposed objective function not only minimizes the longitudinal tire usage, but also make increased use of each tire to generate yaw moment and achieve a quicker yaw response. By analysis and a comparison with prior torque distribution control, the proposed control approach is shown to have better control performance in hardware-in-the-loop simulations.


2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Kun Yang ◽  
Danxiu Dong ◽  
Chao Ma ◽  
Zhaoxian Tian ◽  
Yile Chang ◽  
...  

Tire longitudinal forces of electrics vehicle with four in-wheel-motors can be adjusted independently. This provides advantages for its stability control. In this paper, an electric vehicle with four in-wheel-motors is taken as the research object. Considering key factors such as vehicle velocity and road adhesion coefficient, the criterion of vehicle stability is studied, based on phase plane of sideslip angle and sideslip-angle rate. To solve the problem that the sideslip angle of vehicles is difficult to measure, an algorithm for estimating the sideslip angle based on extended Kalman filter is designed. The control method for vehicle yaw moment based on sliding-mode control and the distribution method for wheel driving/braking torque are proposed. The distribution method takes the minimum sum of the square for wheel load rate as the optimization objective. Based on Matlab/Simulink and Carsim, a cosimulation model for the stability control of electric vehicles with four in-wheel-motors is built. The accuracy of the proposed stability criterion, the algorithm for estimating the sideslip angle and the wheel torque control method are verified. The relevant research can provide some reference for the development of the stability control for electric vehicles with four in-wheel-motors.


Sign in / Sign up

Export Citation Format

Share Document