Integrated active control of independently rotating wheels on rail vehicles via observers

Author(s):  
Zheng-Gang Lu ◽  
Xiao-Jie Sun ◽  
Jun-Qi Yang

As the well-known difficulties are that feedback signals are not easy and economical measurement in practice for active control, this paper presents a study of state estimation for active control of independently rotating wheels (IRW) based on observers. The reduced-order observer and high-order sliding mode observer are used to provide reliable and accurate estimations of the wheel pair state and track curvature using practical sensors. This proposed method uses less sensors than the one of previous studies. Furthermore, lateral accelerator and yaw velocity sensors (gyros) are economical and available for active steering and stability control system to obtain the required feedback signals. The wheels’ relative rotational speed, track curvature and yaw angle of wheelsets are the feedback signals for IRW active control approach. Computer simulations are used to verify the effectiveness of proposed methods and assess control performance in stability and negotiation.

2014 ◽  
Vol 71 (2) ◽  
Author(s):  
M.K. Aripin ◽  
Y. M. Sam ◽  
A. D. Kumeresan ◽  
M.F. Ismail ◽  
Peng Kemao

A review study on integrated active steering and braking control for vehicle yaw stability system is conducted and its finding is discussed in this paper. For road-vehicle dynamic, lateral dynamic control is important in order to determine the vehicle stability. The aw stability control system is the prominent approach for vehicle lateral dynamics where the actual yaw rate and sideslip should be tracked by the controller close to the desired response. To improve the performance of yaw stability control during steady state and critical driving conditions, a current approach using active control of integrated steering and braking could be implemented. This review study discusses the vehicle models, control objectives, control problems and propose control strategies for vehicle yaw stability control system. In the view of control system engineering, the transient performances of tracking control are essential. Based on the review, this paper discusses a basic concept of control strategy based on the composite nonlinear feedback (CNF) and sliding mode control (SMC) whichcan be proposed for integrated active steering and braking control in order to improve the transient performances of the yaw rate and sideslip tracking control in the presence of uncertainties and disturbances.


2014 ◽  
Vol 709 ◽  
pp. 331-334
Author(s):  
Man Hong Huang ◽  
Huan Shen ◽  
Yun Sheng Tan

In this paper, a vehicle stability control system is proposed to improve vehicle comfort, handling and stability. The control system includes reference model, DYC controller and Distributer. Reference model is used to obtain the desired yaw rate. DYC controller determines the desired yaw moment by means of sliding-mode technique. Distributer, based on maneuverability and comfort, distributes driving torque or braking torque according to the desired yaw rate. Simulation result shows that the proposed control algorithm can improve vehicle handling and stability effectively.


1995 ◽  
Vol 117 (3A) ◽  
pp. 252-258 ◽  
Author(s):  
J. L. van Niekerk ◽  
B. H. Tongue

An active control approach that reduces transient noise transmission through a membrane in a circular duct is presented. Discrete sections of piezo-electrical film, PVDF, are used as actuators to adjust the tension of the membrane. Different control strategies, such as optimal, sliding mode and velocity feedback control, are investigated analytically and then implemented experimentally. It is shown that velocity feedback control is the more effective, stable controller for this application.


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Jingshuai Huang ◽  
Hongbo Zhang ◽  
Guojian Tang ◽  
Weimin Bao

For the terminal guidance problem of a missile intercepting a maneuvering target, a profile-tracking-based adaptive guidance law is proposed with inherent continuity in this paper. To flexibly and quantitatively control the convergence rate of the line-of-sight rate, a standard tracking profile is designed where the convergence rate is analytically given. Then, a nonsingular fast terminal sliding-mode control approach is used to track the profile. By estimating the square of the upper bound of target maneuver, an adaptive term is constructed to compensate the maneuver. Therefore, no information of target acceleration is required in the derived law. Stability analysis shows that the tracking error can converge to a small neighborhood of zero in finite time. Furthermore, a guidance-command-conversion scheme is presented to convert the law into the one appropriate for endoatmospheric interceptions. Simulation results indicate that the proposed law is effective and outperforms existing guidance laws.


2014 ◽  
Vol 6 ◽  
pp. 747636 ◽  
Author(s):  
Zhenggang Lu ◽  
Xiaojie Sun ◽  
Jin Zhang

A new solution of disc permanent magnet synchronous motor (PMSM) directly driven wheel is proposed as a design customized for low floor tramcar. And the motors are overhung on the bogie frame to make the weight as the sprung mass. Meanwhile, the universal coupling is installed between the driven wheel and motor shaft. A disc PMSM is designed according to the demand of traction power. The motors are not only traction and steering actuators but are also regarded as sensors to obtain the rotational speed of motor directly driven wheel. Through the obtained data, an active sensorless steering control method is applied using the relative rotational speed between wheel pair. Finally, models combined with motor control and steering control are set up to check the control strategies. The simulation results indicate that sliding mode observer has the functionality of estimating the rotating speed with high accuracy for active steering control. The tramcar exhibits self-steering and better negotiation under active steering control. The tramcar is under a better condition of running along the central line of track with small attack angle and low power consumption while passing the shape curve track.


Author(s):  
Xunjun Ma ◽  
Yang Lu ◽  
Fengjiao Wang

The presented experimental results illustrate the recent advances in the reduction of multifrequency vibrations of helicopter fuselage using an active control of structural response system. Recently, to cancel the multifrequency helicopter vibrations, a hybrid control approach has been proposed combining the filtered-x least mean square algorithm with a discrete model predictive sliding mode controller. To verify its effectiveness and self-adaptability, a set of active control experiments of structural response are conducted on a free–free elastic beam, which simulates a helicopter in flight. Considering that the helicopter vibrations in practical applications are much more complex, the further experiments of real-time active control are performed using a model helicopter test system. Higher discrete frequency components, which are actually of concern, are selected as the control objectives during the tests. The algorithm’s control effects are sufficiently checked by single-input single-output and multiple-input multiple-output tests under different excitation conditions. For many cases the attenuation of measured response exceed level of 20 dB, with maximum reduction reaching 34.1 dB. These two sets of tests confirm that the active control system is practical for canceling the multifrequency helicopter vibrations.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
M. K. Aripin ◽  
Yahaya Md Sam ◽  
Kumeresan A. Danapalasingam ◽  
Kemao Peng ◽  
N. Hamzah ◽  
...  

Yaw stability control system plays a significant role in vehicle lateral dynamics in order to improve the vehicle handling and stability performances. However, not many researches have been focused on the transient performances improvement of vehicle yaw rate and sideslip tracking control. This paper reviews the vital elements for control system design of an active yaw stability control system; the vehicle dynamic models, control objectives, active chassis control, and control strategies with the focus on identifying suitable criteria for improved transient performances. Each element is discussed and compared in terms of their underlying theory, strengths, weaknesses, and applicability. Based on this, we conclude that the sliding mode control with nonlinear sliding surface based on composite nonlinear feedback is a potential control strategy for improving the transient performances of yaw rate and sideslip tracking control.


Author(s):  
Juan S. Núñez ◽  
Luis E. Muñoz

With the aim of prevent situations of vehicle instability against different driving maneuvers, the vehicle yaw stability becomes crucial for safe operation. This paper presents the design and simulation of a traction and a stability control system algorithms for independent four-wheel-driven electric vehicle. The stability control system consists of a multilevel algorithm divided into a high level controller and a low level controller. First, an analysis of the stability of the vehicle is performed using phase portraits analysis, both in open loop and closed loop. The stability control system is designed to generate a desired yaw moment according to the steady state cornering relationship with the steering angle input. As the test vehicle, a 14 DoF vehicle model is proposed including nonlinear tire models that allow the generation of combined forces. The vehicle model includes the powertrain dynamics. The yaw moment generation is performed using the traction and braking forces between the tires of each side of both front and rear axle. In order to generate the maximum traction forces in each of the wheels, a traction and a braking control is developed via a sliding mode controller scheme. Finally a performance comparison between a controlled and an uncontrolled vehicle is presented. The behavior of both vehicles is simulated using a classical double lane change driving maneuver.


2020 ◽  
Vol 10 (18) ◽  
pp. 6446 ◽  
Author(s):  
Mostafa Nikpour ◽  
Loulin Huang ◽  
Ahmed M. Al-Jumaily

Conventional robotic wheelchairs (three or four-wheeled) which are statically stable are poor in mobility. Though a two-wheeled robotic wheelchair has better mobility, it is not statically stable and needs an active stability controller. In addition to mobility and stability, velocity control is also important for the operation of a wheelchair. Conventional stability and velocity controllers rely on the motion of the wheels and require high driving torque and power. In this paper, this problem is tackled by adding a compact pendulum-like movable mechanism whose main function is for stability control. Its motion and those of the wheels are controlled through a quasi-sliding mode control approach to achieve a simultaneous velocity and stability control with much less driving torque and power. Simulation results are presented to show the effectiveness of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document