scholarly journals A New Torque Distribution Control for Four-Wheel Independent-Drive Electric Vehicles

Actuators ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 122
Author(s):  
Dejun Yin ◽  
Junjie Wang ◽  
Jinjian Du ◽  
Gang Chen ◽  
Jia-Sheng Hu

Torque distribution control is a key technique for four-wheel independent-drive electric vehicles because it significantly affects vehicle stability and handling performance, especially under extreme driving conditions. This paper, which focuses on the global yaw moment generated by both the longitudinal and the lateral tire forces, proposes a new distribution control to allocate driving torques to four-wheel motors. The proposed objective function not only minimizes the longitudinal tire usage, but also make increased use of each tire to generate yaw moment and achieve a quicker yaw response. By analysis and a comparison with prior torque distribution control, the proposed control approach is shown to have better control performance in hardware-in-the-loop simulations.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Alberto Parra ◽  
Asier Zubizarreta ◽  
Joshué Pérez ◽  
Martín Dendaluce

Transport electrification is currently a priority for authorities, manufacturers, and research centers around the world. The development of electric vehicles and the improvement of their functionalities are key elements in this strategy. As a result, there is a need for further research in emission reduction, efficiency improvement, or dynamic handling approaches. In order to achieve these objectives, the development of suitable Advanced Driver-Assistance Systems (ADAS) is required. Although traditional control techniques have been widely used for ADAS implementation, the complexity of electric multimotor powertrains makes intelligent control approaches appropriate for these cases. In this work, a novel intelligent Torque Vectoring (TV) system, composed of a neuro-fuzzy vertical tire forces estimator and a fuzzy yaw moment controller, is proposed, which allows enhancing the dynamic behaviour of electric multimotor vehicles. The proposed approach is compared with traditional strategies using the high fidelity vehicle dynamics simulator Dynacar. Results show that the proposed intelligent Torque Vectoring system is able to increase the efficiency of the vehicle by 10%, thanks to the optimal torque distribution and the use of a neuro-fuzzy vertical tire forces estimator which provides 3 times more accurate estimations than analytical approaches.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1934
Author(s):  
Jaewon Nah ◽  
Seongjin Yim

This paper presents a method to design a vehicle stability controller with four-wheel independent braking (4WIB), drive (4WID) and steering (4WIS) for electric vehicles (EVs) adopting in-wheel motor (IWM) system. To improve lateral stability and maneuverability of vehicles, a direct yaw moment control strategy is adopted. A control allocation method is adopted to distribute control yaw moment into tire forces, generated by 4WIB, 4WID and 4WIS. A set of variable weights in the control allocation method is introduced for the application of several actuator combinations. Simulation on a driving simulation tool, CarSim®, shows that the proposed vehicle stability controller is capable of enhancing lateral stability and maneuverability. From the simulation, the effects of actuator combinations on control performance are analyzed.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
David Ruiz Diez ◽  
Efstathios Velenis ◽  
Davide Tavernini ◽  
Edward N. Smith ◽  
Efstathios Siampis ◽  
...  

Vehicles equipped with multiple electric machines allow variable distribution of propulsive and regenerative braking torques between axles or even individual wheels of the car. Left/right torque vectoring (i.e., a torque shift between wheels of the same axle) has been treated extensively in the literature; however, fewer studies focus on the torque shift between the front and rear axles, namely, front/rear torque vectoring, a drivetrain topology more suitable for mass production since it reduces complexity and cost. In this paper, we propose an online control strategy that can enhance vehicle agility and “fun-to-drive” for such a topology or, if necessary, mitigate oversteer during sublimit handling conditions. It includes a front/rear torque control allocation (CA) strategy that is formulated in terms of physical quantities that are directly connected to the vehicle dynamic behavior such as torques and forces, instead of nonphysical control signals. Hence, it is possible to easily incorporate the limitations of the electric machines and tires into the computation of the control action. Aside from the online implementation, this publication includes an offline study to assess the effectiveness of the proposed CA strategy, which illustrates the theoretical capability of affecting yaw moment that the front/rear torque vectoring strategy has for a given set of vehicle and road conditions and considering physical limitations of the tires and actuators. The development of the complete strategy is presented together with the results from hardware-in-the-loop (HiL) simulations, using a high fidelity vehicle model and covering various use cases.


Author(s):  
Xudong Zhang ◽  
Dietmar Göhlich

This paper presents a vehicle dynamic stability controller for distributed-drive electric vehicles. A hierarchical control structure is adopted for the proposed controller. An upper controller is designed on the basis of integrated model-matching control. It consists of a feedforward component plus a feedback component to calculate the desired external yaw moment to achieve the desired vehicle motion. The feedforward control aims at compensating the effect caused by the variation in the linear cornering stiffnesses of the tyres during the life cycle of the tyres. It provides a rapid response under common driving conditions. The linear cornering stiffnesses of the tyres are estimated in real time by the adaptive forgetting-factor recursive least-squares method. Since many vehicle parameters have strongly non-linear and time-varying characteristics, adaptive sliding mode control is used as the feedback component to make the controller robust against systematic uncertainties. To combine the outputs of feedforward and feedback together and to avoid probable conflict, a weight gain coefficient is obtained. Additionally, a conventional sliding-mode controller is introduced as a comparative upper control strategy. The lower controller is utilized to allocate the required yaw moment and traction to the four independent motors, taking into account the tyre grip margins. Simulations for a low- g manoeuvre and a high- g manoeuvre are carried out to evaluate the proposed control algorithm. The results show that the proposed vehicle stability controller can significantly stabilize the vehicle motion and greatly reduce the driver’s workload in comparison with with the conventional sliding-mode controller.


2010 ◽  
Vol 29-32 ◽  
pp. 1991-1996
Author(s):  
Ju Wei Li ◽  
Xiao Lin Cui

A direct yaw moment control (DYC) method based on optimal predictive method is proposed to achieve an external yaw moment which is as low as possible. This control method calculates the necessary moment according the vehicle condition, and then optimizes the distribution of drive/brake torque to achieve the necessary yaw moment considering the constraints of actuators. The effectiveness of the designed controller is investigated by simulations. The simulation results indicate that a satisfactory handling performance can be achieved when the proposed controller is applied.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 798 ◽  
Author(s):  
Seongjin Yim

For the last four decades, several steering systems for vehicles such as active front steering (AFS), front wheel independent steering (FWIS), 4-wheel steering (4WS) and 4-wheel independent steering (4WIS) have been proposed and developed. However, there have been few approaches for comparison among these steering systems with respect to yaw rate tracking or path tracking performance. This paper presents comparison among AFS, FWIS, 4WS and 4WIS in terms of vehicle stability control. In view of vehicle stability control, these systems are used as an actuator for generation of yaw moment. Direct yaw moment control is adopted to calculate a control yaw moment. Distribution from the control yaw moment into tire forces is achieved by a control allocation method. From the calculated tire forces, the steering angles of FWIS, 4WS and 4WIS are determined with a lateral tire force model. To check the performance of these actuators, simulation is conducted on vehicle simulation packages, CarSim. From the simulation, the advantages of FWIS and 4WIS are revealed over AFS and 4WS.


2011 ◽  
Vol 383-390 ◽  
pp. 1326-1332 ◽  
Author(s):  
Zhe Xu ◽  
Min Xiang Wei ◽  
Yang Wang ◽  
Jian Wei Wei

Vehicle running at high speed if affected by crosswind or steering handling may spin or drift out since the yaw moment produced is not big enough to stabilize it. In order to prevent these dangerous situations, a fuzzy direct yaw moment controller is designed in this paper, since it is simple and suitable for nonlinear system. This vehicle stability control system is based on model following control method. The side slip angle and yaw rate which indicate the vehicle’s stability and handling performance are chosen as the control variables. The response of the bicycle model is selected as the reference value. In order to evaluate the performance of the controller, simulations of lane change and J-turn maneuver are carried out. The results show that the stability and handling performance of the vehicle are improved.


2021 ◽  
Vol 13 (8) ◽  
pp. 4549
Author(s):  
Sara Salamone ◽  
Basilio Lenzo ◽  
Giovanni Lutzemberger ◽  
Francesco Bucchi ◽  
Luca Sani

In electric vehicles with multiple motors, the torque at each wheel can be controlled independently, offering significant opportunities for enhancing vehicle dynamics behaviour and system efficiency. This paper investigates energy efficient torque distribution strategies for improving the operational efficiency of electric vehicles with multiple motors. The proposed strategies are based on the minimisation of power losses, considering the powertrain efficiency characteristics, and are easily implementable in real-time. A longitudinal dynamics vehicle model is developed in Simulink/Simscape environment, including energy models for the electrical machines, the converter, and the energy storage system. The energy efficient torque distribution strategies are compared with simple distribution schemes under different standardised driving cycles. The effect of the different strategies on the powertrain elements, such as the electric machine and the energy storage system, are analysed. Simulation results show that the optimal torque distribution strategies provide a reduction in energy consumption of up to 5.5% for the case-study vehicle compared to simple distribution strategies, also benefiting the battery state of charge.


Author(s):  
Francesco Braghin ◽  
Edoardo Sabbioni ◽  
Gabriele Sironi ◽  
Michele Vignati

In last decades hybrid and electric vehicles have been one of the main object of study for automotive industry. Among the different layout of the electric power-train, four in-wheel motors appear to be one of the most attractive. This configuration in fact has several advantages in terms of inner room increase and mass distribution. Furthermore the possibility of independently distribute braking and driving torques on the wheels allows to generate a yaw moment able to improve vehicle handling (torque vectoring). In this paper a torque vectoring control strategy for an electric vehicle with four in-wheel motors is presented. The control strategy is constituted of a steady-state contribution to enhance vehicle handling performances and a transient contribution to increase vehicle lateral stability during limit manoeuvres. Performances of the control logic are evaluated by means of numerical simulations of open and closed loop manoeuvres. Robustness to friction coefficient changes is analysed.


Sign in / Sign up

Export Citation Format

Share Document