scholarly journals Stress Analysis in Adhesive-Butt Joints of Cylindrical Pressure Vessels

1999 ◽  
Vol 4 (3) ◽  
pp. 233-239
Author(s):  
Durmuş Günay ◽  
Alpay Aydemir
2012 ◽  
Vol 538-541 ◽  
pp. 3253-3258 ◽  
Author(s):  
Jun Jian Xiao

According to the results of finite element analysis (FEA), when the diameter of opening of the flat cover is no more than 0.5D (d≤0.5D), there is obvious stress concentration at the edge of opening, but only existed within the region of 2d. Increasing the thickness of flat covers could not relieve the stress concentration at the edge of opening. It is recommended that reinforcing element being installed within the region of 2d should be used. When the diameter of openings is larger than 0.5D (d>0.5D), conical or round angle transitions could be employed at connecting location, with which the edge stress decreased remarkably. However, the primary stress plus the secondary stress would be valued by 3[σ].


2008 ◽  
Vol 75 (4) ◽  
Author(s):  
Chuanxiang Zheng ◽  
Shaohui Lei

Stress analysis of flat steel ribbon wound pressure vessels (FSRWPVs) is very difficult because they have a special discrete structure and complex pretensions exit in the flat steel ribbons, which are wound around the inner shell layer by layer. An analytical multilayered model for stress analysis is presented in this paper, which involves the effect of prestress in every flat steel ribbon layer as well as in the inner shell. Based on this model, an optimal design method for FSRWPV is suggested, which can assure a reasonable stress level and distribution along the wall thickness during the operation. A practical example of a large FSRWPV is finally given for illustration.


2001 ◽  
Vol 15 (2) ◽  
pp. 153-157
Author(s):  
V V Erofeev ◽  
M V Shakhmatov ◽  
M V Erofeev ◽  
V V Kovalenko

2011 ◽  
Vol 138-139 ◽  
pp. 74-78
Author(s):  
Yue Qiang Qian ◽  
Fu Jun Liu ◽  
Zhang Wei Ling ◽  
Shuai Kong

In pressure vessels design, WRC107 provides a typical method of local stress analysis to supports and attachments. But influence of the rigidity of attachments on calculation is not considered. For fatigue analysis of round hollow attachment on cylindrical shell, equivalent stresses calculated by WRC107 were compared with those by finite element method. Three attachment thickness configurations, that half, equal, double of the shell thickness were tested. Results show that, in key point Au defined by WRC107 equivalent stress decreases while attachment rigidity increases, and in key point Cu, equivalent stress increases while attachment rigidity increases. When the thickness of attachment equals to that of shell, equivalent stress of WRC107 in Cu comes closest to FEM.


2014 ◽  
Vol 592-594 ◽  
pp. 1220-1224
Author(s):  
Navin Kumar ◽  
Surjit Angra ◽  
Vinod Kumar Mittal

Saddles are used to support the horizontal pressure vessels such as boiler drums or tanks. Since saddle is an integral part of the vessel, it should be designed in such a way that it can withstand the pressure vessel load while carrying liquid along with the operating weight. This paper presents the stress analysis of saddle support of a horizontal pressure vessel. A model of horizontal pressure vessel and saddle is created in Ansys software. For the given boundry and loading conditions, stresses induced in the saddle support are analyzed using Ansys software. After analysis it is found that maximum localized stress arises at the saddle to vessel interface near the saddle horn area. The results obtained shows that the saddle support design is safe for the given loading conditions and provides the theoretical basis for furthur optimisation.


Sign in / Sign up

Export Citation Format

Share Document