scholarly journals Sublingual Delivery of Astaxanthin through a Novel Ascorbyl Palmitate-Based Nanoemulsion: Preliminary Data

Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 508 ◽  
Author(s):  
Andrea Fratter ◽  
Damiano Biagi ◽  
Arrigo F. G. Cicero

Astaxanthin is a carotenoid extracted from several seaweeds with ascertained therapeutic activity. With specific reference, astaxanthin is widely used in clinical practice to improve ocular tissue health and skin protection from UV ray damages. Despite its well-documented pleiotropic actions and demonstrated clinical efficacy, its bioavailability in humans is low and limited because of its hydrophobicity and poor dissolution in enteric fluids. Furthermore, astaxanthin is very unstable molecule and very sensitive to light exposure and thermal stress. Taken together, these pharmacological and chemical–physical features strongly limit pharmaceutical and nutraceutical development of astaxanthin-based products and as a consequence its full clinical usage. This work describes the preliminary in vitro investigation of sublingual absorption of astaxanthin through a novel ascorbyl palmitate (ASP) based nanoemulsion.

2021 ◽  
pp. 174751982110018
Author(s):  
HaiJiao Chen ◽  
Xinmei Yang ◽  
Peng Sun ◽  
Ying Zhi ◽  
Qingqiang Yao ◽  
...  

Sphingosine kinases (SphKs) are a class of lipid kinases, that have received extensive attention as important rate-limiting enzyme in tumor. Inhibition of the activity of SphK1 can lead to an anticancer effect. Herein, we describe the discovery process and biological characteristics of a new SphK1 inhibitor, ascorbyl palmitate, discovered through computer-aided drug design. Biochemical experiments show that ascorbyl palmitate has a strong inhibitory effect on SphK1, with an IC50 value of 6.4 μM. The MTT experiment showed that ascorbyl palmitate had anti-cancer effects toward the U87, A549, 22RV1, and A375 cell lines. Among them, ascorbyl palmitate has prominent inhibitory activity against the 22RV1 cell line, with an IC50 value of 41.57 μM. To explore the structure–activity relationship, four ascorbyl palmitate derivatives were synthesized and tested for kinase activity. The outstanding effect of ascorbyl palmitate toward SphK1 and its known non-toxicity suggest that ascorbyl palmitate may be a lead compound for the development of effective SphK1 anti-cancer inhibitors.


2002 ◽  
Vol 21 (6) ◽  
pp. 491-500 ◽  
Author(s):  
Joan E. Roberts

Normally light transmission through the eye is benign and serves to direct vision and circadian rhythm. However, with very intense light exposure, or with ambient light exposure to the aged eye and/or young or adult eye in the presence of light-activated (photosensitizing) drugs or dietary supplements, cosmetics, or diagnostic dyes, light can be hazardous, leading to blinding disorders. Light damage to the human eye is avoided because the eye is protected by a very efficient antioxidant system and the chromophores present absorb light and dissipate its energy. After middle age, there is a decrease in the production of antioxidants and antioxidant enzymes and an accumulation of endogenous chromophores that are photo-toxic. The extent to which a particular exogenous photosensitizing substance is capable of producing phototoxic side effects in the eye depends on several parameters, including (1) the chemical structure; (2) the absorption spectra of the drug; (3) binding of the drug to ocular tissue (lens proteins, melanin, DNA); and (4) the ability to cross blood-ocular barriers (amphiphilic or lipophilic). For instance, compounds that have either a tricyclic, heterocyclic, or porphyrin ring structure and are incorporated into ocular tissues are potentially phototoxic agents in the eye. The extent to which these substances might damage the eye (photoefficiency) can be predicted using in vitro and photophysical techniques. With simple, inexpensive testing, compounds can be screened for their potential ocular phototoxicity at the developmental stage. It may be that a portion of the molecule can be modified to reduce phototoxicity while leaving the primary drug effect intact. Preclinical safety testing may prevent ocular side effects that can range from mild, reversible blurred vision to permanent blindness.


2008 ◽  
Vol 35 (S 01) ◽  
Author(s):  
H Leske ◽  
A Baiker ◽  
C Schichor ◽  
J.C Tonn ◽  
R Goldbrunner ◽  
...  

2010 ◽  
Vol 51 (8) ◽  
pp. 4151 ◽  
Author(s):  
Henri Sueke ◽  
Stephen B. Kaye ◽  
Timothy Neal ◽  
Amanda Hall ◽  
Stephen Tuft ◽  
...  

2020 ◽  
Vol 21 (12) ◽  
pp. 2718-2728
Author(s):  
Elsayed M. Abdel Bary ◽  
Ammar N. Harmal ◽  
Mona E. Ibrahim ◽  
Moustafa A. Gouda

2021 ◽  
Vol 8 (1) ◽  
pp. 6
Author(s):  
Divya Gupta ◽  
Jeffrey W. Santoso ◽  
Megan L. McCain

Engineered in vitro models of skeletal muscle are essential for efficiently screening drug safety and efficacy. However, conventional culture substrates poorly replicate physical features of native muscle and do not support long-term culture, which limits tissue maturity. Micromolded gelatin hydrogels cross-linked with microbial transglutaminase (gelatin-MTG hydrogels) have previously been shown to induce C21C2 myotube alignment and improve culture longevity. However, several properties of gelatin-MTG hydrogels have not been systematically characterized, such as changes in elastic modulus during incubation in culture-like conditions and their ability to support sarcomere maturation. In this study, various gelatin-MTG hydrogels were fabricated and incubated in ambient or culture-like conditions. Elastic modulus, mass, and transmittance were measured over a one- or two-week period. Compared to hydrogels in phosphate buffered saline (PBS) or ambient air, hydrogels in Dulbecco’s Modified Eagle Medium (DMEM) and 5% CO2 demonstrated the most stable elastic modulus. A subset of gelatin-MTG hydrogels was micromolded and seeded with C2C12 or primary chick myoblasts, which aligned and fused into multinucleated myotubes with relatively mature sarcomeres. These data are important for fabricating gelatin-MTG hydrogels with predictable and stable mechanical properties and highlight their advantages as culture substrates for engineering relatively mature and stable muscle tissues.


2020 ◽  
Vol 1571 ◽  
pp. 012010
Author(s):  
V P Veiko ◽  
Yu Yu Karlagina ◽  
E E Egorova ◽  
E A Zernitskaya ◽  
D S Kuznetsova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document