pleiotropic actions
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 39)

H-INDEX

29
(FIVE YEARS 5)

2021 ◽  
Vol 20 ◽  
Author(s):  
Maria Marketou ◽  
Joanna Kontaraki ◽  
Spyros Maragkoudakis ◽  
Christos Danelatos ◽  
Sofia Papadaki ◽  
...  

Abstract: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have changed the clinical landscape of diabetes mellitus (DM) therapy through their favourable effects on cardiovascular outcomes. Notably, the use of SGLT2i has been linked to cardiovascular benefits regardless of DM status, while their pleiotropic actions remain to be fully elucidated. What we do know is that SGLT2i exert beneficial effects even at the level of the myocardial cell, and that these are linked to an improvement in the energy substrate, resulting in less inflammation and fibrosis. SGLT2i ameliorate myocardial extracellular matrix remodeling, cardiomyocyte stiffness and concentric hypertrophy, achieving beneficial remodeling of the left ventricle with significant implications for the pathogenesis and outcome of heart failure. Most studies show a significant improvement in markers of diastolic dysfunction along with a reduction in left ventricular hypertrophy. In addition to these effects there is electrophysiological remodeling, which explains initial data suggesting that SGLT2i have an antiarrhythmic action against both atrial and ventricular arrhythmias. However, future studies need to clarify not only the exact mechanisms of this beneficial functional, structural, and electrophysiological cardiac remodeling, but also its magnitude, and to determine whether this is a class or a drug effect.


2021 ◽  
Author(s):  
Ranjan Kumar Sahu ◽  
Deepti Trivedi ◽  
Subhash C. Lakhotia

The hsrω gene of Drosophila melanogaster, an early discovered non-coding developmentally active and stress-inducible gene, has pleiotropic actions through its multiple nuclear and cytoplasmic non-coding transcripts. With a view to understand diverse functions and mechanisms of actions of this gene, we generated a series of transgenic lines for over-expression or RNAi of different transcripts and CRISPR-Cas9 mediated deletion alleles. These are described here.


2021 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Polyxeni Mantzouratou ◽  
Angelo Michele Lavecchia ◽  
Christodoulos Xinaris

Thyroid hormone (TH) signalling is a universally conserved pathway with pleiotropic actions that is able to control the development, metabolism, and homeostasis of organisms. Using evidence from paleoecology/palaeoanthropology and data from the physiology of modern humans, we try to assess the natural history of TH signalling and its role in human evolution. Our net thesis is that TH signalling has likely played a critical role in human evolution by facilitating the adaptive responses of early hominids to unprecedently challenging and continuously changing environments. These ancient roles have been conserved in modern humans, in whom TH signalling still responds to and regulates adaptations to present-day environmental and pathophysiological stresses, thus making it a promising therapeutic target.


2021 ◽  
Vol 67 (6) ◽  
pp. 98-112
Author(s):  
S. S. Shklyaev ◽  
G. A. Melnichenko ◽  
N. N. Volevodz ◽  
N. A. Falaleeva ◽  
S. A. Ivanov ◽  
...  

Adipose tissue mostly composed of different types of fat is one of the largest endocrine organs in the body playing multiple intricate roles including but not limited to energy storage, metabolic homeostasis, generation of heat, participation in immune functions and secretion of a number of biologically active factors known as adipokines. The most abundant of them is adiponectin. This adipocite-derived hormone exerts pleiotropic actions and exhibits insulin-sensitizing, antidiabetic, anti-obesogenic, anti-inflammatory, antiatherogenic, cardio- and neuroprotective properties. Contrariwise to its protective effects against various pathological events in different cell types, adiponectin may have links to several systemic diseases and malignances. Reduction in adiponectin levels has an implication in COVID-19-associated respiratory failure, which is attributed mainly to a phenomenon called ‘adiponectin paradox’. Ample evidence about multiple functions of adiponectin in the body was obtained from animal, mostly rodent studies. Our succinct review is entirely about multifaceted roles of adiponectin and mechanisms of its action in different physiological and pathological states.


2021 ◽  
Vol 22 (19) ◽  
pp. 10839
Author(s):  
Nicolas C. Nicolaides ◽  
Evangelia Charmandari

Glucocorticoids are the final products of the neuroendocrine hypothalamic–pituitary—adrenal axis, and play an important role in the stress response to re-establish homeostasis when it is threatened, or perceived as threatened. These steroid hormones have pleiotropic actions through binding to their cognate receptor, the human glucocorticoid receptor, which functions as a ligand-bound transcription factor inducing or repressing the expression of a large number of target genes. To achieve homeostasis, glucocorticoid signaling should have an optimal effect on all tissues. Indeed, any inappropriate glucocorticoid effect in terms of quantity or quality has been associated with pathologic conditions, which are characterized by short-term or long-lasting detrimental effects. Two such conditions, the primary generalized glucocorticoid resistance and hypersensitivity syndromes, are discussed in this review article. Undoubtedly, the tremendous progress of structural, molecular, and cellular biology, in association with the continued progress of biotechnology, has led to a better and more in-depth understanding of these rare endocrinologic conditions, as well as more effective therapeutic management.


2021 ◽  
Vol 10 (17) ◽  
pp. 3798
Author(s):  
Connie P. C. Ow ◽  
Anton Trask-Marino ◽  
Ashenafi H. Betrie ◽  
Roger G. Evans ◽  
Clive N. May ◽  
...  

Sepsis is the leading cause of acute kidney injury (AKI) and leads to increased morbidity and mortality in intensive care units. Current treatments for septic AKI are largely supportive and are not targeted towards its pathophysiology. Sepsis is commonly characterized by systemic inflammation and increased production of reactive oxygen species (ROS), particularly superoxide. Concomitantly released nitric oxide (NO) then reacts with superoxide, leading to the formation of reactive nitrogen species (RNS), predominantly peroxynitrite. Sepsis-induced ROS and RNS can reduce the bioavailability of NO, mediating renal microcirculatory abnormalities, localized tissue hypoxia and mitochondrial dysfunction, thereby initiating a propagating cycle of cellular injury culminating in AKI. In this review, we discuss the various sources of ROS during sepsis and their pathophysiological interactions with the immune system, microcirculation and mitochondria that can lead to the development of AKI. We also discuss the therapeutic utility of N-acetylcysteine and potential reasons for its efficacy in animal models of sepsis, and its inefficacy in ameliorating oxidative stress-induced organ dysfunction in human sepsis. Finally, we review the pre-clinical studies examining the antioxidant and pleiotropic actions of vitamin C that may be of benefit for mitigating septic AKI, including future implications for clinical sepsis.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1231
Author(s):  
Cecilia Marini ◽  
Vanessa Cossu ◽  
Matteo Bauckneht ◽  
Francesco Lanfranchi ◽  
Stefano Raffa ◽  
...  

Several studies reported that metformin, the most widely used drug for type 2 diabetes, might affect cancer aggressiveness. The biguanide seems to directly impair cancer energy asset, with the consequent phosphorylation of AMP-activated protein kinase (AMPK) inhibiting cell proliferation and tumor growth. This action is most often attributed to a well-documented blockage of oxidative phosphorylation (OXPHOS) caused by a direct interference of metformin on Complex I function. Nevertheless, several other pleiotropic actions seem to contribute to the anticancer potential of this biguanide. In particular, in vitro and in vivo experimental studies recently documented that metformin selectively inhibits the uptake of 2-[18F]-Fluoro-2-Deoxy-D-Glucose (FDG), via an impaired catalytic function of the enzyme hexose-6P-dehydrogenase (H6PD). H6PD triggers a still largely uncharacterized pentose-phosphate pathway (PPP) within the endoplasmic reticulum (ER) that has been found to play a pivotal role in feeding the NADPH reductive power for both cellular proliferation and antioxidant responses. Regardless of its exploitability in the clinical setting, this metformin action might configure the ER metabolism as a potential target for innovative therapeutic strategies in patients with solid cancers and potentially modifies the current interpretative model of FDG uptake, attributing PET/CT capability to predict cancer aggressiveness to the activation of H6PD catalytic function.


2021 ◽  
Vol 17 (5) ◽  
pp. 1414-1417
Author(s):  
Masoomeh Khalifeh ◽  
Peter Penson ◽  
Maciej Banach ◽  
Amirhossein Sahebkar

IntroductionPyroptosis is a regulated form of cell death, which is often a consequence of the activation of inflammatory caspases.Material and methodsAppropriate inflammatory responses and the induction of pyroptosis enhance the clearance of pathogens and increase innate immunity.ResultsHowever, excessive pyroptosis contributes to a hyperinflammatory response and aggravates tissue damage, thereby causing inflammatory diseases. There have been recent reports on the modulation of pyroptosis by statins, which may explain part of the pleiotropic actions of these drugs in inflammatory diseases and cancer.ConclusionsHerein, the extant evidence for the potential value of statins in targeting pyroptosis in various diseases is reviewed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fatima El Idrissi ◽  
Bernard Gressier ◽  
David Devos ◽  
Karim Belarbi

Neuroinflammation, as defined by the presence of classically activated microglia, is thought to play a key role in numerous neurodegenerative disorders such as Alzheimer’s disease. While modulating neuroinflammation could prove beneficial against neurodegeneration, identifying its most relevant biological processes and pharmacological targets remains highly challenging. In the present study, we combined text-mining, functional enrichment and protein-level functional interaction analyses to 1) identify the proteins significantly associated to neuroinflammation in Alzheimer’s disease over the scientific literature, 2) distinguish the key proteins most likely to control the neuroinflammatory processes significantly associated to Alzheimer's disease, 3) identify their regulatory microRNAs among those dysregulated in Alzheimer's disease and 4) assess their pharmacological targetability. 94 proteins were found to be significantly associated to neuroinflammation in Alzheimer’s disease over the scientific literature and IL4, IL10 and IL13 signaling as well as TLR-mediated MyD88- and TRAF6-dependent responses were their most significantly enriched biological processes. IL10, TLR4, IL6, AKT1, CRP, IL4, CXCL8, TNF-alpha, ITGAM, CCL2 and NOS3 were identified as the most potent regulators of the functional interaction network formed by these immune processes. These key proteins were indexed to be regulated by 63 microRNAs dysregulated in Alzheimer's disease, 13 long non-coding RNAs and targetable by 55 small molecules and 8 protein-based therapeutics. In conclusion, our study identifies eleven key proteins with the highest ability to control neuroinflammatory processes significantly associated to Alzheimer’s disease, as well as pharmacological compounds with single or pleiotropic actions acting on them. As such, it may facilitate the prioritization of diagnostic and target-engagement biomarkers as well as the development of effective therapeutic strategies against neuroinflammation in Alzheimer’s disease.


Sign in / Sign up

Export Citation Format

Share Document