scholarly journals Synthesis-Driven Stereochemical Assignment of Marine Polycyclic Ether Natural Products

Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 257
Author(s):  
Haruhiko Fuwa

Marine polycyclic ether natural products have gained significant interest from the chemical community due to their impressively huge molecular architecture and diverse biological functions. The structure assignment of this class of extraordinarily complex natural products has mainly relied on NMR spectroscopic analysis. However, NMR spectroscopic analysis has its own limitations, including configurational assignment of stereogenic centers within conformationally flexible systems. Chemical shift deviation analysis of synthetic model compounds is a reliable means to assign the relative configuration of “difficult” stereogenic centers. The complete configurational assignment must be ultimately established through total synthesis. The aim of this review is to summarize the indispensable role of organic synthesis in stereochemical assignment of marine polycyclic ethers.

1999 ◽  
Vol 10 (5) ◽  
pp. 221-237 ◽  
Author(s):  
J. Martín Torres-Valencia ◽  
Carlos M. Cerda-García-Rojas ◽  
Pedro Joseph-Nathan

Author(s):  
Douglass Taber

As N. Selvakumar of Dr. Reddy’s Laboratories, Ltd., Hyderabad approached (Tetrahedron Lett. 2007, 48, 2021) the synthesis of phaseolinic acid 6, there was some concern about the projected cyclization of 2 to 3, as this would involve the coupling of two electron-deficient alkenes. In fact, the Ru-mediated ring-closing metathesis proceeded efficiently. The product unsaturated lactone 3 could be reduced selectively to either the trans product 4 or the cis product 5. There has been relatively little work on the synthesis of the higher branched sugars, such as the octalose 13, a component of several natural products. The synthesis of 13 (Organic Lett. 2007, 9, 4777) by Ulrich Koert of the Philipps-University Marburg also began with a Baylis-Hillman product, the easily-resolved secondary alcohol 8. As had been observed in other contexts, cyclization of the protected allylic alcohol 9a failed, but cyclization of the free alcohol 9b proceeded smoothly. V-directed epoxidation then set the relative configuration of the stereogenic centers on the ring. Ring-closing metathesis to construct tetrasubstituted alkenes has been a challenge, and specially-designed Ru complexes have been put forward specifically for this transformation. Oliver Reiser of the Universität Regensburg was pleased to observe (Angew. Chem. Int. Ed. 2007, 46, 6361) that the second-generation Grubbs catalyst itself worked well for the cyclization of 17 to 18. Again in this synthesis, catalytic V was used to direct the relative configuration of the epoxide. Intramolecular alkyne metathesis is now well-established as a robust and useful method for organic synthesis. It was also known that Ru-mediated metathesis of an alkyne with ethylene could lead to the diene. The question facing (Angew. Chem. Int. Ed . 2007, 46, 5545) Alois Fürstner of the Max-Planck-Institut, Mülheim was whether these transformations could be carried out on the very delicate epoxy alkene 21. In fact, the transformations of 21 to 22 and of 22 to 23 proceeded well, setting the stage for the total synthesis of Amphidinolide V 25.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Shi-Ming Xu ◽  
Liang Wei ◽  
Chong Shen ◽  
Lu Xiao ◽  
Hai-Yan Tao ◽  
...  

AbstractEnantiomerically enriched indole-containing heterocycles play a vital role in bioscience, medicine, and chemistry. As one of the most attractive subtypes of indole alkaloids, highly substituted tetrahydro-γ-carbolines are the basic structural unit in many natural products and pharmaceuticals. However, the syntheses of tetrahydro-γ-carbolines with high functionalities from readily available reagents are significant challenging. In particular, the stereodivergent syntheses of tetrahydro-γ-carbolines containing multi-stereogenic centers remain quite difficult. Herein, we report an expedient and stereodivergent assembly of tetrahydro-γ-carbolines with remarkably high levels of stereoselective control in an efficient cascade process from aldimine esters and indolyl allylic carbonates via a synergistic Cu/Ir catalyst system. Control experiments-guided optimization of synergistic catalysts and mechanistic investigations reveal that a stereodivergent allylation reaction and a subsequent highly stereoselective iso-Pictet-Spengler cyclization are the key elements to success.


Science ◽  
2018 ◽  
Vol 361 (6403) ◽  
pp. 664-667 ◽  
Author(s):  
Dainis Kaldre ◽  
Immo Klose ◽  
Nuno Maulide

The chemistry of the carbonyl group is essential to modern organic synthesis. The preparation of substituted, enantioenriched 1,3- or 1,5-dicarbonyls is well developed, as their disconnection naturally follows from the intrinsic polarity of the carbonyl group. By contrast, a general enantioselective access to quaternary stereocenters in acyclic 1,4-dicarbonyl systems remains an unresolved problem, despite the tremendous importance of 2,3-substituted 1,4-dicarbonyl motifs in natural products and drug scaffolds. Here we present a broad enantioselective and stereodivergent strategy to access acyclic, polysubstituted 1,4-dicarbonyls via acid-catalyzed [3,3]-sulfonium rearrangement starting from vinyl sulfoxides and ynamides. The stereochemistry at sulfur governs the absolute sense of chiral induction, whereas the double bond geometry dictates the relative configuration of the final products.


Sign in / Sign up

Export Citation Format

Share Document