scholarly journals Electrodialytic Processes: Market Overview, Membrane Phenomena, Recent Developments and Sustainable Strategies

Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 221 ◽  
Author(s):  
Laurent Bazinet ◽  
Thibaud R. Geoffroy

In the context of preserving and improving human health, electrodialytic processes are very promising perspectives. Indeed, they allow the treatment of water, preservation of food products, production of bioactive compounds, extraction of organic acids, and recovery of energy from natural and wastewaters without major environmental impact. Hence, the aim of the present review is to give a global portrait of the most recent developments in electrodialytic membrane phenomena and their uses in sustainable strategies. It has appeared that new knowledge on pulsed electric fields, electroconvective vortices, overlimiting conditions and reversal modes as well as recent demonstrations of their applications are currently boosting the interest for electrodialytic processes. However, the hurdles are still high when dealing with scale-ups and real-life conditions. Furthermore, looking at the recent research trends, potable water and wastewater treatment as well as the production of value-added bioactive products in a circular economy will probably be the main applications to be developed and improved. All these processes, taking into account their principles and specificities, can be used for specific eco-efficient applications. However, to prove the sustainability of such process strategies, more life cycle assessments will be necessary to convince people of the merits of coupling these technologies.

2013 ◽  
Author(s):  
Jill B. Kjellsson ◽  
David Greene ◽  
Raj Bhattarai ◽  
Michael E. Webber

Nationally, 4% of electricity usage goes towards moving and treating water and wastewater. The energy intensity of the water and wastewater utility sector is affected by many factors including water source, water quality, and the distance and elevation that water must be transported. Furthermore, energy accounts for 10% or more of a utility’s total operating cost, suggesting that energy savings can account for significant cost savings. Better knowledge of where and when energy is used could support strategic energy interventions and reveal opportunities for efficiency. Accordingly, this investigation quantifies energy intensity by process and type, including electricity and natural gas, and explores the time-varying nature of electric energy consumption for potable water distribution using the Austin Water Utility (AWU) in Austin, Texas as a case study. This research found that most of energy consumed by the AWU is for pumping throughout the distribution network (57%) and at lift stations (10%) while potable water treatment accounts for the least (5%). Though the focus is site specific, the methodology shown herein can be applied to other utilities with sufficient data.


Author(s):  
Cayla Cook ◽  
Veera Gnaneswar Gude

Chitosan is a naturally occurring biopolymer originating from several microbial species as well as crustacean species, such as shrimp and lobster. Chitosan has excellent physical and chemical properties that allow its use in various environmental applications especially in water treatment. It is a biodegradable polymer, and it is inexpensive providing an environmentally friendly and economic option for water and wastewater treatment. Chitosan offers a myriad of applications through chemical coagulation and flocculation, antimicrobial properties, adsorption capabilities, and nanofiltration and can provide a sustainable route for water and wastewater treatment. This book chapter elaborates the recent developments in chitosan applications in water and wastewater treatment.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2016 ◽  
Author(s):  
Petros Kokkinos ◽  
Dionissios Mantzavinos ◽  
Danae Venieri

Water resources contamination has a worldwide impact and is a cause of global concern. The need for provision of clean water is becoming more and more demanding. Nanotechnology may support effective strategies for the treatment, use and reuse of water and the development of next-generation water supply systems. The excellent properties and effectiveness of nanomaterials make them particularly suitable for water/wastewater treatment. This review provides a comprehensive overview of the main categories of nanomaterials used in catalytic processes (carbon nanotubes/graphitic carbon nitride (CNT/g-C3N4) composites/graphene-based composites, metal oxides and composites, metal–organic framework and commercially available nanomaterials). These materials have found application in the removal of different categories of pollutants, including pharmaceutically active compounds, personal care products, organic micropollutants, as well as for the disinfection of bacterial, viral and protozoa microbial targets, in water and wastewater matrices. Apart from reviewing the characteristics and efficacy of the aforementioned nanoengineered materials for the removal of different pollutants, we have also recorded performance limitations issues (e.g., toxicity, operating conditions and reuse) for their practical application in water and wastewater treatment on large scale. Research efforts and continuous production are expected to support the development of eco-friendly, economic and efficient nanomaterials for real life applications in the near future.


Author(s):  
Yeek-Chia Ho ◽  
Siong-Chin Chua ◽  
Fai-Kait Chong

Coagulation and flocculation processes are widely used in potable water treatment due to its high efficiency in turbidity removal. Egyptians discovered this method in 1500 BC by using alum to settle the suspended solids in the water. Today, the coagulation and flocculation processes are implemented with the purpose of agglomerate colloids and fine particles in water into larger particles, which is also known as floc. Therefore, reduction of turbidity and pollutants e.g. organic matter, inorganic matter, suspended solid, etc. can be achieved. This chapter covers the principle of coagulation and flocculation process which includes the charge neutralization and various binding mechanisms e.g. interparticle bridging, sweeping coagulation, and absorption. Besides, various types of coagulants and flocculants that have been discovered and their respective effectiveness in potable water treatment are discussed as well in this chapter. Polymer modifications to synthesize new coagulant/flocculant i.e. grafting and crosslinking are also included.


2015 ◽  
Vol 7 (1) ◽  
pp. 13-30 ◽  
Author(s):  
Tianlong Zheng ◽  
Juan Wang ◽  
Qunhui Wang ◽  
Huimin Meng ◽  
Lihong Wang

2001 ◽  
Vol 43 (10) ◽  
pp. 91-99 ◽  
Author(s):  
D. Eisenberg ◽  
J. Soller ◽  
R. Sakaji ◽  
A. Olivieri

Evaluating the reliability of treatment processes and treatment facilities should be an important part of the planning and design process for water resource, wastewater treatment, and particularly wastewater reuse projects. With the recent developments in technology, particularly the development of membrane processes and alternative disinfection processes for water and wastewater treatment, there is an increasing need for a common methodology to evaluate the reliability of alternative processes and treatment facilities that utilize different combinations of those processes. To assess the reliability of a treatment facility, several aspects of treatment must be considered including a methodical evaluation of both mechanical reliability and plant performance. A straightforward method for conducting these types of analyses is described herein along with a description of applications of this methodology. A discussion is provided highlighting the value of such a methodology for both the water quality engineer and the risk manager.


Sign in / Sign up

Export Citation Format

Share Document