scholarly journals HiLo Based Line Scanning Temporal Focusing Microscopy for High-Speed, Deep Tissue Imaging

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 634
Author(s):  
Ruheng Shi ◽  
Yuanlong Zhang ◽  
Tiankuang Zhou ◽  
Lingjie Kong

High-speed, optical-sectioning imaging is highly desired in biomedical studies, as most bio-structures and bio-dynamics are in three-dimensions. Compared to point-scanning techniques, line scanning temporal focusing microscopy (LSTFM) is a promising method that can achieve high temporal resolution while maintaining a deep penetration depth. However, the contrast and axial confinement would still be deteriorated in scattering tissue imaging. Here, we propose a HiLo-based LSTFM, utilizing structured illumination to inhibit the fluorescence background and, thus, enhance the image contrast and axial confinement in deep imaging. We demonstrate the superiority of our method by performing volumetric imaging of neurons and dynamical imaging of microglia in mouse brains in vivo.

2017 ◽  
Author(s):  
Logan Grosenick ◽  
Michael Broxton ◽  
Christina K. Kim ◽  
Conor Liston ◽  
Ben Poole ◽  
...  

Tracking the coordinated activity of cellular events through volumes of intact tissue is a major challenge in biology that has inspired significant technological innovation. Yet scanless measurement of the high-speed activity of individual neurons across three dimensions in scattering mammalian tissue remains an open problem. Here we develop and validate a computational imaging approach (SWIFT) that integrates high-dimensional, structured statistics with light field microscopy to allow the synchronous acquisition of single-neuron resolution activity throughout intact tissue volumes as fast as a camera can capture images (currently up to 100 Hz at full camera resolution), attaining rates needed to keep pace with emerging fast calcium and voltage sensors. We demonstrate that this large field-of-view, single-snapshot volume acquisition method—which requires only a simple and inexpensive modification to a standard fluorescence microscope—enables scanless capture of coordinated activity patterns throughout mammalian neural volumes. Further, the volumetric nature of SWIFT also allows fast in vivo imaging, motion correction, and cell identification throughout curved subcortical structures like the dorsal hippocampus, where cellular-resolution dynamics spanning hippocampal subfields can be simultaneously observed during a virtual context learning task in a behaving animal. SWIFT’s ability to rapidly and easily record from volumes of many cells across layers opens the door to widespread identification of dynamical motifs and timing dependencies among coordinated cell assemblies during adaptive, modulated, or maladaptive physiological processes in neural systems.


2018 ◽  
Vol 9 (10) ◽  
pp. 2705-2710 ◽  
Author(s):  
Wei Qin ◽  
Pengfei Zhang ◽  
Hui Li ◽  
Jacky W. Y. Lam ◽  
Yuanjing Cai ◽  
...  

A successful strategy for the design of ultrabright red luminogens with aggregation-induced emission (AIE) features is reported. The AIE dots can be utilized as efficient fluorescent probes for in vivo deep-tissue imaging with high penetration depth and high contrast.


Author(s):  
Zohreh Hosseinaee ◽  
Bingyao Tan ◽  
Kirsten Carter ◽  
Denise Hileeto ◽  
Luigina Sorbara ◽  
...  

2004 ◽  
Vol 126 (4) ◽  
pp. 813-821 ◽  
Author(s):  
Douglas Chinn ◽  
Peter Ostendorp ◽  
Mike Haugh ◽  
Russell Kershmann ◽  
Thomas Kurfess ◽  
...  

Nickel and nickel-alloy microparts sized on the order of 5–1000 microns have been imaged in three dimensions using a new microscopic technique, Digital Volumetric Imaging (DVI). The gears were fabricated using Sandia National Laboratories’ LIGA technology (lithography, molding, and electroplating). The images were taken on a microscope built by Resolution Sciences Corporation by slicing the gear into one-micron thin slices, photographing each slice, and then reconstructing the image with software. The images were matched to the original CAD (computer aided design) model, allowing LIGA designers, for the first time, to see visually how much deviation from the design is induced by the manufacturing process. Calibration was done by imaging brass ball bearings and matching them to the CAD model of a sphere. A major advantage of DVI over scanning techniques is that internal defects can be imaged to very high resolution. In order to perform the metrology operations on the microcomponents, high-speed and high-precision algorithms are developed for coordinate metrology. The algorithms are based on a least-squares approach to data registration the {X,Y,Z} point clouds generated from the component surface onto a target geometry defined in a CAD model. Both primitive geometric element analyses as well as an overall comparison of the part geometry are discussed. Initial results of the micromeasurements are presented in the paper.


2016 ◽  
Vol 110 (3) ◽  
pp. 165a ◽  
Author(s):  
Simon P. Poland ◽  
James A. Levitt ◽  
Nikola Krstajić ◽  
Ahmet Erdogen ◽  
Richard J. Walker ◽  
...  

2018 ◽  
Author(s):  
Shuting Han ◽  
Weijian Yang ◽  
Rafael Yuste

To capture the emergent properties of neural circuits, high-speed volumetric imaging of neural activity at cellular resolution is desirable. But while conventional two-photon calcium imaging is a powerful tool to study population activity in vivo, it is restrained to two-dimensional planes. Expanding it to 3D while maintaining high spatiotemporal resolution appears necessary. Here, we developed a two-photon microscope with dual-color laser excitation that can image neural activity in a 3D volume. We imaged the neuronal activity of primary visual cortex from awake mice, spanning from L2 to L5 with 10 planes, at a rate of 10 vol/sec, and demonstrated volumetric imaging of L1 long-range PFC projections and L2/3 somatas. Using this method, we map visually-evoked neuronal ensembles in 3D, finding a lack of columnar structure in orientation responses and revealing functional correlations between cortical layers which differ from trial to trial and are missed in sequential imaging. We also reveal functional interactions between presynaptic L1 axons and postsynaptic L2/3 neurons. Volumetric two-photon imaging appears an ideal method for functional connectomics of neural circuits.


2021 ◽  
Vol 7 (28) ◽  
pp. eaay5496
Author(s):  
Cheng Zheng ◽  
Jong Kang Park ◽  
Murat Yildirim ◽  
Josiah R. Boivin ◽  
Yi Xue ◽  
...  

Nonlinear optical microscopy has enabled in vivo deep tissue imaging on the millimeter scale. A key unmet challenge is its limited throughput especially compared to rapid wide-field modalities that are used ubiquitously in thin specimens. Wide-field imaging methods in tissue specimens have found successes in optically cleared tissues and at shallower depths, but the scattering of emission photons in thick turbid samples severely degrades image quality at the camera. To address this challenge, we introduce a novel technique called De-scattering with Excitation Patterning or “DEEP,” which uses patterned nonlinear excitation followed by computational imaging–assisted wide-field detection. Multiphoton temporal focusing allows high-resolution excitation patterns to be projected deep inside specimen at multiple scattering lengths due to the use of long wavelength light. Computational reconstruction allows high-resolution structural features to be reconstructed from tens to hundreds of DEEP images instead of millions of point-scanning measurements.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Chen ◽  
Ryan G. Natan ◽  
Yuhan Yang ◽  
Shih-Wei Chou ◽  
Qinrong Zhang ◽  
...  

AbstractStudying neuronal activity at synapses requires high spatiotemporal resolution. For high spatial resolution in vivo imaging at depth, adaptive optics (AO) is required to correct sample-induced aberrations. To improve temporal resolution, Bessel focus has been combined with two-photon fluorescence microscopy (2PFM) for fast volumetric imaging at subcellular lateral resolution. To achieve both high-spatial and high-temporal resolution at depth, we develop an efficient AO method that corrects the distorted wavefront of Bessel focus at the objective focal plane and recovers diffraction-limited imaging performance. Applying AO Bessel focus scanning 2PFM to volumetric imaging of zebrafish larval and mouse brains down to 500 µm depth, we demonstrate substantial improvements in the sensitivity and resolution of structural and functional measurements of synapses in vivo. This enables volumetric measurements of synaptic calcium and glutamate activity at high accuracy, including the simultaneous recording of glutamate activity of apical and basal dendritic spines in the mouse cortex.


Sign in / Sign up

Export Citation Format

Share Document