scholarly journals A Review of Commercial Developments and Recent Laboratory Research of Dialyzers and Membranes for Hemodialysis Application

Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 767
Author(s):  
Noresah Said ◽  
Woei Jye Lau ◽  
Yeek-Chia Ho ◽  
Soo Kun Lim ◽  
Muhammad Nidzhom Zainol Abidin ◽  
...  

Dialyzers have been commercially used for hemodialysis application since the 1950s, but progress in improving their efficiencies has never stopped over the decades. This article aims to provide an up-to-date review on the commercial developments and recent laboratory research of dialyzers for hemodialysis application and to discuss the technical aspects of dialyzer development, including hollow fiber membrane materials, dialyzer design, sterilization processes and flow simulation. The technical challenges of dialyzers are also highlighted in this review, which discusses the research areas that need to be prioritized to further improve the properties of dialyzers, such as flux, biocompatibility, flow distribution and urea clearance rate. We hope this review article can provide insights to researchers in developing/designing an ideal dialyzer that can bring the best hemodialysis treatment outcomes to kidney disease patients.


2020 ◽  
Vol 69 (6) ◽  
pp. 523-537 ◽  
Author(s):  
Shubham Sangrola ◽  
Avinash Kumar ◽  
S. Nivedhitha ◽  
Jaideep Chatterjee ◽  
Senthilmurugan Subbiah ◽  
...  

Abstract Membrane backwash is one of the most widely used membrane regeneration techniques in large-scale desalination operations and water and wastewater treatment applications. It is necessary in order to enhance membrane life and is critical in managing the cost of pure water. The estimation of optimal backwash conditions is very important for improved hollow fiber membrane (HFM) operations. A unique feature in HFM backwash operations is the lumen side pressure drop, which leads to variation in backwash water flow across the fiber length. In this work, the effect of fiber diameter, membrane structural properties and backwash water pressure and temperature on flow distribution across the membrane length is studied for HFM modules. An analytical model for HFM backwash is developed, and model predictions are compared with measured backwash water flow variation over the fiber length. Experimental results show that the backwash flow variation over the fiber length is minimized by maintaining low backwash water pressure. Simultaneously, minimum backwash flux for effective cleaning may be achieved by increasing backwash water temperature. Homogeneous flow distribution during backwash improves backwash efficiency or forward flow rejuvenation, which can also be achieved by optimizing fiber diameter and membrane permeability. The validated mathematical model may be used for the optimization of backwash operating conditions and HF dimensions to achieve homogeneous backwash flow distribution across the membrane length.



2003 ◽  
Vol 211 (2) ◽  
pp. 263-269 ◽  
Author(s):  
Jumeng Zheng ◽  
Youyi Xu ◽  
Zhikang Xu




2012 ◽  
Vol 27 (9) ◽  
pp. 951-955
Author(s):  
Chun-Li YANG ◽  
Qi-Ming XU ◽  
Ming GONG ◽  
Wei LIU






2021 ◽  
Vol 8 (8) ◽  
pp. 104
Author(s):  
Gerardo Catapano ◽  
Juliane K. Unger ◽  
Elisabetta M. Zanetti ◽  
Gionata Fragomeni ◽  
Jörg C. Gerlach

Liver cells cultured in 3D bioreactors is an interesting option for temporary extracorporeal liver support in the treatment of acute liver failure and for animal models for preclinical drug screening. Bioreactor capacity to eliminate drugs is generally used for assessing cell metabolic competence in different bioreactors or to scale-up bioreactor design and performance for clinical or preclinical applications. However, drug adsorption and physical transport often disguise the intrinsic drug biotransformation kinetics and cell metabolic state. In this study, we characterized the intrinsic kinetics of lidocaine elimination and adsorption by porcine liver cells cultured in 3D four-compartment hollow fiber membrane network perfusion bioreactors. Models of lidocaine transport and biotransformation were used to extract intrinsic kinetic information from response to lidocaine bolus of bioreactor versus adhesion cultures. Different from 2D adhesion cultures, cells in the bioreactors are organized in liver-like aggregates. Adsorption on bioreactor constituents significantly affected lidocaine elimination and was effectively accounted for in kinetic analysis. Lidocaine elimination and cellular monoethylglicinexylidide biotransformation featured first-order kinetics with near-to-in vivo cell-specific capacity that was retained for times suitable for clinical assist and drug screening. Different from 2D cultures, cells in the 3D bioreactors challenged with lidocaine were exposed to close-to-physiological lidocaine and monoethylglicinexylidide concentration profiles. Kinetic analysis suggests bioreactor technology feasibility for preclinical drug screening and patient assist and that drug adsorption should be accounted for to assess cell state in different cultures and when laboratory bioreactor design and performance is scaled-up to clinical use or toxicological drug screening.



2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Sher Ahmad ◽  
Gabriela Vollet Marson ◽  
Waheed Ur Rehman ◽  
Mohammad Younas ◽  
Sarah Farrukh ◽  
...  

Abstract Background In this research work, a coupled heat and mass transfer model was developed for salt recovery from concentrated brine water through an osmotic membrane distillation (OMD) process in a hollow fiber membrane contactor (HFMC).The model was built based on the resistance-in-series concept for water transport across the hydrophobic membrane. The model was adopted to incorporate the effects of polarization layers such as temperature and concentration polarization, as well as viscosity changes during concentration. Results The modeling equations were numerically simulated in MATLAB® and were successfully validated with experimental data from literature with a deviation within the range of 1–5%. The model was then applied to study the effects of key process parameters like feed concentrations, osmotic solution concentration, feed, and osmotic solution flow rates and feed temperature on the overall heat and mass transfer coefficient as well as on water transport flux to improve the process efficiency. The mass balance modeling was applied to calculate the membrane area based on the simulated mass transfer coefficient. Finally, a scale-up for the MD process for salt recovery on an industrial scale was proposed. Conclusions This study highlights the effect of key parameters for salt recovery from wastewater using the membrane distillation process. Further, the applicability of the OMD process for salt recovery on large scale was investigated. Sensitivity analysis was performed to identify the key parameters. From the results of this study, it is concluded that the OMD process can be promising in salt recovery from wastewater.



Sign in / Sign up

Export Citation Format

Share Document