scholarly journals Designing 3D Membrane Modules for Gas Separation Based on Hollow Fibers from Poly(4-methyl-1-pentene)

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 36
Author(s):  
Svetlana Yu. Markova ◽  
Anton V. Dukhov ◽  
Martin Pelzer ◽  
Maxim G. Shalygin ◽  
Thomas Vad ◽  
...  

Designing hollow fiber (HF) membrane modules occupies one of the key positions in the development of efficient membrane processes for various purposes. In developing HF membrane modules, it is very important to have a uniform HF distribution and flow mixing in the shell side to significantly improve mass transfer and efficiency. This work suggests the application of different textile 3D HF structures (braided hoses and woven tape fabrics). The 3D structures consist of melt-spun, dense HFs based on poly(4-methyl-1-pentene) (PMP). Since the textile processing of HFs can damage the wall of the fiber or close the fiber bore, the membrane properties of the obtained structures are tested with a CO2/CH4 mixture in the temperature range of 0 to 40 °C. It is shown that HFs within the textile structure keep the same transport and separation characteristics compared to initial HFs. The mechanical properties of the PMP-based HFs allow their use in typical textile processes for the production of various membrane structures, even at a larger scale. PMP-based membranes can find application in separation processes, where other polymeric membranes are not stable. For example, they can be used for the separation of hydrocarbons or gas mixtures with volatile organic compounds.

Photonics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Henry Quach ◽  
Hyukmo Kang ◽  
Siddhartha Sirsi ◽  
Aman Chandra ◽  
Heejoo Choi ◽  
...  

The metrology of membrane structures, especially inflatable, curved, optical surfaces, remains challenging. Internal pressure, mechanical membrane properties, and circumferential boundary conditions imbue highly dynamic slopes to the final optic surface. Here, we present our method and experimental results for measuring a 1 m inflatable reflector’s shape response to dynamic perturbations in a thermal vacuum chamber. Our method uses phase-measuring deflectometry to track shape change in response to pressure change, thermal gradient, and controlled puncture. We use an initial measurement as a virtual null reference, allowing us to compare 500 mm of measurable aperture of the concave f/2, 1-meter diameter inflatable optic. We built a custom deflectometer that attaches to the TVAC window to make full use of its clear aperture, with kinematic references behind the test article for calibration. Our method produces 500 × 500 pixel resolution 3D surface maps with a repeatability of 150 nm RMS within a cryogenic vacuum environment (T = 140 K, P = 0.11 Pa).


2010 ◽  
Vol 17 (1-3) ◽  
pp. 52-56 ◽  
Author(s):  
Shufeng Shen ◽  
Kathryn H. Smith ◽  
Sandra E. Kentish ◽  
Geoff W. Stevens

1994 ◽  
Vol 59 (4) ◽  
pp. 737-755 ◽  
Author(s):  
Petr Mikulášek

Various methods and concepts that are currently being used and proposed to control or minimize concentration polarization and fouling in membrane separation processes are reviewed. A morphological analysis of hydrodynamic ways to prevent the detrimental influence on fluxes is given. The potentials of these different approaches are analyzed and some examples of module designs resulting from the various approaches with special attention to rotary membrane modules are given.


2019 ◽  
Author(s):  
Matthias Wessling

Synthetic membranes for desalination and ion separation processes are a prerequisite for the supply of safe and sufficient drinking water as well as smart process water tailored to its application. This requires a versatile membrane fabrication methodology. Starting from an extensive set of new ion separation membranes synthesized with a layer-by-layer methodology, we demonstrate for the first time that an artificial neural network (ANN) can predict ion retention and water flux values based on membrane fabrication conditions. The predictive ANN is used in a local single-objective optimization approach to identify manufacturing conditions that improve permeability of existing membranes. A deterministic global multi-objective optimization is performed in order to identify the upper bound (Pareto front) of the delicate trade-off between ion retention characteristics and permeability. Ultimately, a coupling of the ANN into a hybrid model enables physical insight into the influence of fabrication conditions on apparent membrane properties.


2020 ◽  
Vol 11 (46) ◽  
pp. 7370-7381
Author(s):  
Irshad Kammakakam ◽  
Jason E. Bara ◽  
Enrique M. Jackson

Considerable attention has been given to polymeric membranes either containing, or built from, ionic liquids (ILs) in gas separation processes due to their selective separation of CO2 molecules.


Sign in / Sign up

Export Citation Format

Share Document