scholarly journals Structures, Properties, and Performances—Relationships of Polymeric Membranes for Pervaporative Desalination

Membranes ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 58 ◽  
Author(s):  
Nayan Singha ◽  
Mrinmoy Karmakar ◽  
Pijush Chattopadhyay ◽  
Sagar Roy ◽  
Mousumi Deb ◽  
...  

For the fulfilment of increasing global demand and associated challenges related to the supply of clean-and-safe water, PV has been considered as one of the most attractive and promising areas in desalinating salty-water of varied salinities. In pervaporative desalination, the sustainability, endurance, and structural features of membrane, along with operating parameters, play the dominant roles and impart paramount impact in governing the overall PV efficiency. Indeed, polymeric- and organic-membranes suffer from several drawbacks, including inferior structural stability and durability, whereas the fabrication of purely inorganic membranes is complicated and costly. Therefore, recent development on the high-performance and cost-friendly PV membrane is mostly concentrated on synthesizing composite- and NCP-membranes possessing the advantages of both organic- and inorganic-membranes. This review reflects the insights into the physicochemical properties and fabrication approaches of different classes of PV membranes, especially composite- and NCP-membranes. The mass transport mechanisms interrelated to the specialized structural features have been discussed. Additionally, the performance potential and application prospects of these membranes in a wide spectrum of desalination and wastewater treatment have been elaborated. Finally, the challenges and future perspectives have been identified in developing and scaling up different high-performance membranes suitable for broader commercial applications.

Author(s):  
James E. Mark ◽  
Harry R. Allcock ◽  
Robert West

At the present time, polysiloxanes are unique among inorganic and semi-inorganic polymers. They have been the most studied by far, and are the most important with regard to commercial applications. Thus, it is not surprising that a large number of review articles exist describing the synthesis, properties, and applications of these materials. The Si-O backbone of this class of polymers endows it with a variety of intriguing properties. For example, the strength of this bond gives the siloxane polymers considerable thermal stability, which is very important for their use in high-temperature application (for example as heat-transfer agents and high-performance elastomers). The nature of the bonding and the chemical characteristics of typical side groups give the chains a very low surface free energy and, therefore, highly unusual and desirable surface properties. Not surprising, polysiloxanes are much used, for example, as mold-release agents, for waterproofing garments, and as biomedical materials. Some unusual structural features of the chains give rise to physical properties that are also of considerable scientific interest. For example, the substituted Si atom and the unsubstituted O atom differ greatly in size, giving the chain a very irregular cross section. This influences the way the chains pack in the bulk, amorphous state, which, in turn, gives the chains very unusual equation-of-state properties (such as compressibilities). Also, the bond angles around the O atom are much larger than those around the Si, and this makes the planar all-trans form of the chain approximate a series of closed polygons. As a result, siloxane chains exhibit a number of interesting configurational characteristics. These structural features, and a number of properties and their associated applications, will be discussed in this chapter. The major categories of homopolymers and copolymers to be discussed are linear siloxane polymers [-SiRR'O-] (with various alkyl and aryl R,R' side groups), (ii) sesquisiloxane polymers possibly having a ladder structure, (iii) siloxane-silarylene polymers [-Si(CH3)2OSi(CH3)2(C6H4)m-] (where the skeletal phenylene units are either meta or para), (iv) silalkylene polymers [-Si(CH3)2(CH2)m-], and (v) random and block copolymers, and blends of some of the above. Topics of particular importance are the structure, flexibility, transition temperatures, permeability, and other physical properties.


Author(s):  
James E. Mark ◽  
Dale W. Schaefer ◽  
Gui Lin

Polysiloxanes are unique among inorganic and semi-inorganic polymers; they are also the most studied and the most important with regard to commercial applications. Thus, it’s not surprising that there is an extensive literature describing the synthesis, properties, and applications of these materials, including books, proceedings books, sections of books or encyclopedias, review articles, and historical articles. The purpose of this volume is not to give a comprehensive overview of these polymers but rather to focus on some novel and interesting aspects of polysiloxane science and engineering, including properties, work in progress, and important unsolved problems. The Si-O backbone endows polysiloxanes with a variety of intriguing properties. The strength of the Si-O bond, for example, imparts considerable thermal stability, which is important for high-temperature applications (e.g., as heat-transfer agents and high-performance elastomers). The nature of the bonding and the chemical characteristics of typical side groups impart low surface free energy and therefore desirable surface properties. Polysiloxanes, for example, are used as mold-release agents, waterproofing sprays, and biomedical materials. Structural features of the chains give rise to physical properties that are also of considerable scientific interest. For example, the substituted Si atom and the unsubstituted O atom differ greatly in size, giving the chain a nonuniform cross section. This characteristic affects the way the chains pack in the bulk, amorphous state, which explains the unusual equation-of-state properties (such as compressibility). Also, the bond angles around the O atom are much larger than those around the Si, which makes the planar all trans form of the chain approximate a series of closed polygons, as illustrated in figure 1.1. As a result, siloxane chains exhibit a number of interesting configurational characteristics that impact properties and associated applications. The major categories of homopolymers and copolymers to be discussed are (i) linear siloxane polymers -SiRR’O-] (with various alkyl and aryl R,R’ side groups), (ii) sesquisiloxane polymers possibly having a ladder structure, (iii) siloxane-silarylene polymers [–Si(CH3)2OSi(CH3)2(C6H4)m –] (where the skeletal phenylene units are either meta or para), (iv) silalkylene polymers [–Si(CH3)2(CH2)m–], and (v) random and block copolymers, and blends of some of the above.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract Perylenes and perinones are separate groups of pigments categorized within the carbonyl chemical class. The two pigment groups show similarities, for example, in their chemical structural features and, to an extent, in their technical and application properties as high-performance organic pigments. Perylenes constitute a series of firmly established high-performance pigments, offering red and violet colors, and also extending to black. Synthetically, they are derived from perylene-1,4,5,8-tetracarboxylic acid. The perylenes tend to be quite expensive pigments, but their high levels of fastness properties mean that they are suitable for highly demanding applications. In particular, they offer very high heat stability. Two perinone pigments are used commercially. In their synthesis from naphthalene-1,4,5,8-tetracarboxylic acid, they are formed as mixtures of the two isomers, which can be separated. The trans isomer, CI Pigment Orange 43, is a highly important commercial pigment, especially for plastics, while the cis isomer, CI Pigment Red 194, is bordeaux in color and is of much lesser importance. The perinone, CI Pigment Orange 43, provides a brilliant orange color and has very good fastness properties. Its commercial manufacture involves a challenging multistage procedure and consequently it is one of the most expensive organic pigments on the market.


2018 ◽  
Vol 51 (4) ◽  
pp. 291-336 ◽  
Author(s):  
Antimo Graziano ◽  
Shaffiq Jaffer ◽  
Mohini Sain

Blends of polyethylene (PE) and polypropylene (PP) have always been the subject of intense reasearch for encouraging polymer waste recycling while producing new materials for specific applications in a sustainable way. However, being thermodynamically immiscible, these polyolefins form a binary system usually exhibiting lower performances compared with those of the homopolymers. Many studies have been carried out to better understand the PE/PP blend compatibilization for developing a high-performance and cost-effective product. Both nonreactive and reactive compatibilization promote the brittle to ductile transition for a PE/PP blend. However, the final product usually does not meet the requirements for high demanding commercial applications. Therefore, further PE/PP modification with a reinforcing filler, being either synthetic or natural, proved to be a good method for manufacturing high-performance reinforcend polymer blend composites, with superior and tailored properties. This review summarizes the recent progress in compatibilization techniques applied for enhancing the interfacial adhesion between PE and PP. Moreover, future perspectives on better understanding the influence of themodynamics on PE/PP synergy are discussed to introduce more effective compatibilization strategies, which will allow this blend to be used for innovative industrial applications.


2014 ◽  
Vol 20 (2) ◽  
pp. 416-424 ◽  
Author(s):  
Kai-Yang Niu ◽  
Hong-Gang Liao ◽  
Haimei Zheng

AbstractCoalescence is a significant pathway for the growth of nanostructures. Here we studied the coalescence of Bi nanoparticles in situ by liquid cell transmission electron microscopy (TEM). The growth of Bi nanoparticles was initiated from a bismuth neodecanoate precursor solution by electron beam irradiation inside a liquid cell under the TEM. A significant number of coalescence events occurred from the as-grown Bi nanodots. Both symmetric coalescence of two equal-sized nanoparticles and asymmetric coalescence of two or more unequal-sized nanoparticles were analyzed along their growth trajectories. Our observation suggests that two mass transport mechanisms, i.e., surface diffusion and grain boundary diffusion, are responsible for the shape evolution of nanoparticles after a coalescence event.


2018 ◽  
Vol 11 (22) ◽  
pp. 63
Author(s):  
Fabio A. Suarez- Bustamante ◽  
Orlando D. Barrios-Revollo ◽  
Anderson Valencia ◽  
Juan P. Hernandez-Ortiz

A platform to design composite materials of a polymeric matrix, that are specifically for military applications on fluvial and naval navigation, has been developed using energy dissipation and storage mechanisms. Our composites are designed to generate synergy between the dissipation capacities of ceramics and high-performance fibers, which are used as the reinforced material in the lightweight laminates. The composite design is combined with processing tools and advanced characterization techniques that result in laminates with reliability, traceability and quality. The platform begins with the identification of energy dissipation mechanisms and the detailed characterization of the polymeric resin. It includes the Time – Temperature – Transformation Diagram (TTT- Diagram) that supplies the optimal processing conditions. Our designs open new paths for military applications including a wide spectrum of protective systems together with geometric versatility, high mechanical resistance and reliability


Sign in / Sign up

Export Citation Format

Share Document