fastness properties
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 81)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Mousa Sadeghi-Kiakhani ◽  
Ali Reza Tehrani-Bagha ◽  
Fateme Sadat Miri ◽  
Elaheh Hashemi ◽  
Mahdi Safi

There is a growing interest for producing multifunctional cellulose fabrics using green and sustainable technology. In this study, we explored an eco-friendly procedure for dyeing cotton fabrics with Malva sylvestris (MS) as a natural colorant and rendering antibacterial cotton fabric by the silver nanoparticles. MS colorants were extracted from dried petals in water using the ultrasound technique, cotton fabrics were dyed with the extracted MS colorant at 100°C for 90 min. The colorimetric data and colorfastness properties were investigated in the absence and presence of tannic acid (TA) as a bio-mordant. Results indicated that MS dye had a high potential for reducing the silver nitrate, so that the silver particle size distribution on cotton fabric was obtained 50–80 nm, and TA had a positive effect on the MS extract and reduced Ag on the cotton. Furthermore, the reduction of bacterial growth of the dyed cotton considerably (up to 99%) improved by AgNPs. The wash-, and light-fastness properties of samples dyed with MS were enhanced from moderate to good-very good by mordanting.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Khaled Mostafa

Purpose This paper aims at studying the oxygen plasma treatment and the previously prepared and fully characterized chitosan nanoparticles (CNPs) as a green and eco-friendly strategy for surface modification of viscose fabric. This was done to render viscose fabric dye able with two types of acid dyes that do not have direct affinity to fix on it via improving the fabric wettability. Design/methodology/approach To achieve the goal, viscose fabric was activated with oxygen plasma at optimum conditions and coated with different concentrations of CNPs solution via conventional pad dry cure technique. The untreated and plasma-treated fabrics with CNPs were dyed with two types of acid dyes, namely, Acid Orange 7 and Methyl Red under determined conditions. The color strength (K/S), fastness properties to light, rubbing and perspiration, add on %, tensile strength, wettability and durability of the dyed samples were determined and compared. Findings The results divulged that oxygen plasma-treated fabric with CNPs and the aforementioned dyes in question could improve the flowing properties in comparison with untreated fabric: (a) the fabric wettability expressed as wetting area mm2; (b) the dye ability and fastness properties of viscose fabrics expressed as K/S and fastness properties; and (c) the strength properties and add on % of the treated fabric. On the other hand, the durability of the plasma-treated fabric decreased with increasing washing cycles. Originality/value The novelty addressed here was using plasma treatment as an eco-friendly pre-treatment approach for attachment of CNPs as a multifunctional green bio-nano polymer onto viscose fabric, which improved the dyeing properties of the fabric with acid dyes that do not have direct affinity to fix onto it.


2021 ◽  
Vol 55 (9-10) ◽  
pp. 1119-1129
Author(s):  
RATTANAPHOL MONGKHOLRATTANASIT ◽  
◽  
CHAROON KLAICHOI ◽  
NATTADON RUNGRUANGKITKRAI ◽  
◽  
...  

This study investigated the use of a thickening agent derived from modified starch of wild taro corms in the screen printing of cotton fabric using reactive dye. The best conditions for developing the print paste and steaming time in order to obtain maximum color yield were established. The results revealed impressive color fastness properties in the printed samples; although, the printed fabric possessed slightly lesser tensile and tear strength, in comparison with the unprinted fabric. The printed fabric also exhibited increased bending stiffness properties. Largely, this study reveals that the printing paste containing the thickening agent derived from carboxymethyl starch within wild taro corms can be utilized in the printing of cotton fabric using reactive dye.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7075
Author(s):  
Shruthi Manjunath Shenava ◽  
J. V. Shanmukha Kumar ◽  
Rajkumar Ganugula ◽  
Mohammed Rafi Shaik ◽  
Rosa Busquets ◽  
...  

Aqueous fluorescent dispersions containing dyed acrylic-based copolymer nanoparticles possess significant credentials concerning green technology as compared to those prepared with the conventional vinyl-based monomers in textile and garment sectors; however, their essential textile fastness properties are yet to achieve. In the present work, a series of acrylic nanodispersions were synthesized by varying the moles ratio of benzyl methacrylate (BZMA), methyl methacrylate (MMA), and 2-hydroxypropyl methacrylate (HPMA) monomers. This was done to study their effect on dye aggregation and dyed polymer particles agglomeration. FT-IR spectral analysis showed the formation of polymer structures, while Malvern Analyzer, Transmission Electron Microscopy, and Scanning Electron Microscopy analysis suggested that the particles are spherical in shape and their size is less than 200 nm. The obtained nanodispersions were later applied on cotton fabrics for the evaluation of wash fastness and colour migration. Premier color scan spectrophotometer and zeta potential measurement studies suggested that colour migration of printed cotton fabrics increased with an increasing agglomeration of particles and it was also observed to increase with the moles ratio of MMA and zeta potentials.


2021 ◽  

<p>Natural products have always been appreciated due to the awareness about environmental standards for global health by using green technologies in their isolation and extraction. Thereupon natural dyes have been used in all fields due to having ecofriendly, therapeutic and aesthetic nature. For the current study, microwave radiations (MW) have been used as a green extraction tool to explore the natural coloring potency of Tea leaves for the dyeing of cotton fabrics. For isolation of natural dye from tea leaves in aqueous and basic media MW irradiation for 1-6 min has been given and used to dye cotton fabric. It has been evaluated that an increase in color yield (K/S) with the use of 6 min of microwave energy when basic extract of tea leaves was used to dye onto cotton fabric. It has been also revealed that in the case of the pre-mordanting method, 6% of Cu and 8% of Fe as a post mordanting method give the best fastness properties and the highest color yields. It is concluded that MW energy has an excellent ability for isolation of colorant from Tea leaves for dyeing of cotton fabric under reduced optimal dyeing conditions.</p>


2021 ◽  
pp. 54-57
Author(s):  
Navinkumar A. Kucha ◽  
Manishkumar J. Tank ◽  
G. M. Malik

In this paper synthesis of some new mono azo disperse dyes based on 2-amino 5-(4'-nitro phenyl) 1,3,4-thiadiazole moiety has been reported. Preparation of mono azo disperse dyes via condensation and nally diazotization of substituted primary amine and condensed with N-(4-(4'-chlorophenyl)thiazol-2-yl)-2-((5-(4'-nitrophenyl)-1,3,4-thiadiazol-2-yl)amino)acetamide (RR) to 1 give a series of mono azo dyes (RR -RR ). All the dyes were characterized by IR, H NMR, UV-Visible and elemental analysis and their dyeing 1 15 performance evaluated using High Temperature High Pressure method (HTHP) at 130°C on polyester fabric. All dyes gave good to excellent fastness properties.


Cotton leaves have been used to extract natural dye for dyeing of Egyptian cotton variety Giza 86 fabric and its blend with polyester 50:50, using different mordants such as iron (II) sulfate, copper (II) sulfate, and alum. The exhaust dyeing method was utilized using the pre-mordant technique. It is observed that both fabric samples can be dyed in different colors and depth of shades with Cotton leaves dye. Iron (II) sulfate ensures the best light fastness. Improved light fastness is obtained using abovementioned lower amounts of iron (II) sulfate and copper (II) sulfate. Alum is found to be less effective than iron (II) sulfate and copper (II) sulfate on the light fastness. As a novel alternative and potential natural dye, Cotton leaves extract solution can be used to get various colors and shades with satisfactory fastness properties. The mordanted and un-mordanted fabric samples were tested for their dyeing performance in terms of color parameters K/S, (L*), a*, b*, (C*) and (H*), and fastness properties (wash, perspiration, light and rubbing fastness) were studied. The samples showed high color strength, and high fastness properties. These results are very important for industrial application and with the production of a natural dye as an inexpensive source from cotton leaves as a by-product. Another objective is to increase the production of eco-textile garments with a good price for the Egyptian customers.


2021 ◽  
pp. 59-60
Author(s):  
A.S. Monisha ◽  
G. Parasakthibala

Synthetic dyes release huge amount of waste and uniform colourants lead to health hazard. It also disturbing the ecobalance of the nature. Natural dyes are mostly derived from plants, invertebrates, or minerals. The most of the natural dyes are vegetable dyes from plant sources-roots, berries, bark, leaves, and wood—and other organic sources such as fungi and lichens. Natural dyes exhibit good biodegradability and are more compatible with the environment. In spite of their inferior fastness, natural dyes are more acceptable to environmentally conscious people around the world. The present study deals with the natural dyes extracted from Rubia Cordifloria. The extracted dye used to dye selected silk fabric and myrobalan mordant used for dye ability, fastness properties, absorbency test. Two shades with different concentration have been developed. Absorbency properties of the dyes extracted from madder and sinking test was determined. The colour fastness through washing and rubbing (Wet and Dry) was an excellent satisfaction in both different concentrations.


2021 ◽  
Vol 18 ◽  
Author(s):  
Fatma A. Mohamed ◽  
Shaban Elkhabiry ◽  
Ismail A. Ismail ◽  
Attia O. Attia

: The dyes are synthesized by 3-Amino-2-thioxo-4thiazolidinone (N-Amino rhodanine) with glutaraldehyde or Terephthalaldehyde by 2:1 mole to form a and b then coupled with diazonium salts p-Amino benzenesulfonic acid and 4-Amino 3,4 disulfoazobenzeneazobenzene by 2:1 to form new different bis monoazo a1, b1 and diazo a2 and b2 acid dyes. Therefore, the synthesized dyes were applied to both silk and wool fabric materials. We also evaluated the antimicrobial activity for these dyed fabrics against two model gram-negative and gram-positive bacteria. Further, the chemical composition of these dyes is emphasized by elemental analysis Aims: This paper aims to synthesize, apply dye and antimicrobial to four new acid dyes based on derivatives of N-Amino rodanine as a chromophoric group. These dyes are used in dyeing silk and wool with the good lightfastness and are also excellent for washing, rubbing, and sweating fastness. Also, we measure antimicrobial activity for silk and wool fabrics toward Gram-negative, Gram-positive. Background: The search for a synthesis of new acid dyes has antimicrobial for gram-negative and gram-positive. These dyes are mainly used on silk and wool fabrics which have excellent for light fastness, washing, rubbing, and sweating fastness. Objective: The present studies were aimed at synthesis, characterization and antimicrobial toward gram- negative and gram-positive. Methods: The infra-red spectrum was recorded using an Infra-red spectrometer, Perkin Elmer/1650 FT-IR. The 1H-NMR spectra were recorded using a Varian 400MHz spectrometer. The absorbance of the dyes was measured in the ultraviolet-visible region between 300 and 700 nm by a UNICAM UV spectrophotometer. The dye uptake by wool and silk fabrics was measured using a Shimadzu UV-2401PC (UV/V is spectrophotometer at λmax) before and after dyeing. The produced dyes were found to have good antimicrobial activity against a variety of bacteria. Results and Discussion: The compounds a1, b1, a2 &b2 shows good antimicrobial activity toward gram-negative (E. coli), gram-positive (S. aurous). The data showed that exhaustion and the fastness properties of silk and wool dyed fabrics were both very high. Conclusion: This work prepares newly synthesized acid dyes based on 3-Amino-2-thioxo-4thiazolidinone derivatives and uses them for dyeing wool and silk fabrics. Both synthetic dyes have good light fastness and fastness properties. Also, all dyes have a good antimicrobial effect.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract Perylenes and perinones are separate groups of pigments categorized within the carbonyl chemical class. The two pigment groups show similarities, for example, in their chemical structural features and, to an extent, in their technical and application properties as high-performance organic pigments. Perylenes constitute a series of firmly established high-performance pigments, offering red and violet colors, and also extending to black. Synthetically, they are derived from perylene-1,4,5,8-tetracarboxylic acid. The perylenes tend to be quite expensive pigments, but their high levels of fastness properties mean that they are suitable for highly demanding applications. In particular, they offer very high heat stability. Two perinone pigments are used commercially. In their synthesis from naphthalene-1,4,5,8-tetracarboxylic acid, they are formed as mixtures of the two isomers, which can be separated. The trans isomer, CI Pigment Orange 43, is a highly important commercial pigment, especially for plastics, while the cis isomer, CI Pigment Red 194, is bordeaux in color and is of much lesser importance. The perinone, CI Pigment Orange 43, provides a brilliant orange color and has very good fastness properties. Its commercial manufacture involves a challenging multistage procedure and consequently it is one of the most expensive organic pigments on the market.


Sign in / Sign up

Export Citation Format

Share Document