scholarly journals Investigation of the Restored Joint for Aluminum Alloy

Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 97 ◽  
Author(s):  
Chao Chen ◽  
Huiyang Zhang ◽  
Hao Peng ◽  
Xiangkun Ran ◽  
Qing Pan

In recent years, the mechanical clinching method plays an increasingly important role in the building of thin-walled structures. The clinched joint can be employed to join the lightweight materials. Compared with other joining methods, the clinched joint has better mechanical behavior. However, the clinched joint may be deformed during use when it bears a high shear force. In this research, a process to join aluminum alloy and restore deformed joint was proposed and investigated. The clinched joint was deformed in the deforming process. Then, a customized rivet and two flat restoring tools were utilized for restoring the deformed joint to join aluminum alloy. Different restoring forces such as 45, 40, 35, 30, 25, and 20 kN were employed to produce diverse restored joints. Some shearing tests on the restored joint were utilized for understanding joint material flow, mode of failure, thickness of neck, shear strength, and absorption of energy. The thickness of neck can be increased in restoring process, which contributes to improve the shear strength. The rivet embedded in a pit also helps restored joint bear shear force, so all of the restored joints have higher absorption of energy and shear strength than the clinched joints. The restoring process effectively restores the deformed joint to obtain better mechanical behavior.

Author(s):  
Xiaolan Han ◽  
Shengdun Zhao

Lightweight materials, manufacturing technology and the car body structure optimization are the three main approaches to achieve the lightweight constructions. The lightweight materials, such as aluminum or magnesium alloys, are widely utilized in the automotive industry for the weight reduction. Mechanical clinching is used to connect the lightweight materials. In this study, the sheets were joined by the extensible die clinching and flat-clinching. The tensile strength and shear strength of the aluminum alloy 5052 were investigated by the two different tools. Compared with the extensible die clinching, both the tensile strength and shear strength of the clinched joint produced with flat-clinching is higher. And the tensile strength of the clinched joint is up to 54% higher than that of the extensible die clinching.


Alloy Digest ◽  
1958 ◽  
Vol 7 (10) ◽  

Abstract AMBRALOY-928 is a copper-aluminum alloy having high strength, hardness and excellent resistance to general corrosion. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength. It also includes information on corrosion resistance as well as forming, machining, and joining. Filing Code: Cu-69. Producer or source: American Brass Company.


Alloy Digest ◽  
2003 ◽  
Vol 52 (11) ◽  

Abstract Kaiser Aluminum alloy 6033 has improved machinability over alloy 6061 with an addition of bismuth. The alloy also has a good anodizing response and higher strength than alloy 6061. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: AL-386. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Alloy Digest ◽  
1999 ◽  
Vol 48 (12) ◽  

Abstract Kaiser Aluminum Alloy 7049 has high mechanical properties and good machinability. The alloy offers a resistance to stress-corrosion cracking and is typically used in aircraft structural parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fatigue. It also includes information on forming, heat treating, machining, and surface treatment. Filing Code: AL-365. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Alloy Digest ◽  
1999 ◽  
Vol 48 (10) ◽  

Abstract Kaiser Aluminum alloy KA62 (Tennalum alloy KA62) is a lead-free alternative to 6262. It offers good machinability and corrosion resistance and displays good acceptance of coatings (anodize response). It can be used in place of 6262 because its physical and mechanical properties are equivalent to those of 6262 (see Alloy Digest Al-361, September 1999). This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, and surface treatment. Filing Code: AL-362. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Alloy Digest ◽  
1999 ◽  
Vol 48 (9) ◽  

Abstract Kaiser Aluminum alloy 6262 (Tennalum alloy 6262) is an Al-Mg-Si-Cu-Cr-Pb-Bi alloy with characteristic good machinability and corrosion resistance and a good acceptance of coatings (anodize response). It is typically used in automotive parts, fittings, building hardware, and valve components. This datasheet provides information on composition, physical properties, tensile properties, and shear strength as well as fatigue. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: AL-361. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Alloy Digest ◽  
1962 ◽  
Vol 11 (11) ◽  

Abstract IMPALCO 770 is a heat treatable, high strength aluminum alloy available in bar form for machining applications. It is recommended for highly stressed structural parts. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-120. Producer or source: Imperial Aluminium Company Ltd.


Alloy Digest ◽  
1988 ◽  
Vol 37 (11) ◽  

Abstract UNS A96061 is a wrought precipitation-hardenable aluminum alloy having excellent resistance to corrosion and good mechanical properties. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-292. Producer or source: Various aluminum companies.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2312
Author(s):  
Xin Liang ◽  
Fang Yan ◽  
Yuliang Chen ◽  
Huiqin Wu ◽  
Peihuan Ye ◽  
...  

In order to study the mechanical properties of recycled aggregate concrete (RAC) at different ages, 264 standard cubes were designed to test its direct shear strength and cube compressive strength while considering the parameters of age and recycled aggregate replacement ratio. The failure pattern and load–displacement curve of specimens at direct shearing were obtained; the direct shear strength and residual shear strength were extracted from the load–displacement curves. Experimental results indicate that the influence of the replacement ratio for the front and side cracks of RAC is insignificant, with the former being straight and the latter relatively convoluted. At the age of three days, the damaged interface between aggregate and mortar is almost completely responsible for concrete failure; in addition to the damage of coarse aggregates, aggregate failure is also an important factor in concrete failure at other ages. The load–displacement curve of RAC at direct shearing can be divided into elasticity, elastoplasticity, plasticity, and stabilization stages. The brittleness of concrete decreases with its age, which is reflected in the gradual shortening of the elastoplastic stage. At 28 days of age, the peak direct shear force increases with the replacement ratio, while the trend is opposite at ages of 3 days, 7 days, and 14 days, respectively. The residual strength of RAC decreases inversely to the replacement ratio, with the rate of decline growing over time. A two-parameter RAC direct shear strength calculation formula was established based on the analysis of age and replacement rate to peak shear force of RAC. The relationship between cube compressive strength and direct shear strength of recycled concrete at various ages was investigated.


Sign in / Sign up

Export Citation Format

Share Document