scholarly journals Performance Comparison of Parametric and Non-Parametric Regression Models for Uncertainty Analysis of Sheet Metal Forming Processes

Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 457 ◽  
Author(s):  
Armando E. Marques ◽  
Pedro A. Prates ◽  
André F. G. Pereira ◽  
Marta C. Oliveira ◽  
José V. Fernandes ◽  
...  

This work aims to compare the performance of various parametric and non-parametric metamodeling techniques when applied to sheet metal forming processes. For this, the U-Channel and the Square Cup forming processes were studied. In both cases, three steel grades were considered, and numerical simulations were performed, in order to establish a database for each combination of forming process and material. Each database was used to train and test the various metamodels, and their predictive performances were evaluated. The best performing metamodeling techniques were Gaussian processes, multi-layer perceptron, support vector machines, kernel ridge regression and polynomial chaos expansion.

Procedia CIRP ◽  
2014 ◽  
Vol 18 ◽  
pp. 203-208 ◽  
Author(s):  
J. Enz ◽  
S. Riekehr ◽  
V. Ventzke ◽  
N. Sotirov ◽  
N. Kashaev

2018 ◽  
Vol 19 (6) ◽  
pp. 756-760
Author(s):  
Tomasz Trzepieciński ◽  
Irena Nowotyńska

The friction phenomenon existed in almost all plastic working processes, in particular sheet metal forming, is a complex function of the material's properties, parameters of the forming process, surface topography of the sheet and tools, and lubrication conditions. During the stamping of the drawpieces there are zones differentiated in terms of stress and strain state, displacement speed and friction conditions. This article describes the methods for determining the value of the coefficient of friction in selected areas of sheet metal and presents the drawbacks and limitations of these methods.


Author(s):  
Jasri Mohamad

To improve sheet metal forming process simulation using finite element method, there is a need to incorporate an appropriate constitutive equation capable of describing the Bauschinger effect and the so-called cyclic transient, derived from a near to actual sheet metal forming process testing tool. A cyclic loading tool has been developed to test and record the characteristics of sheet metal deformation by investigating the Bauschinger effect factors (BEF) and cyclic hardening behaviour. Experimental investigation conducted on low carbon steel and stainless steel demonstrates that the tool is able to record sheet metal behaviour under cyclic loading. The results are analysed for signs of the Bauschinger effect and cyclic hardening effect. It was found that the Bauschinger effect does occur during bending and unbending loadings in sheet metal forming process.


Sign in / Sign up

Export Citation Format

Share Document