scholarly journals High Entropy Alloys Manufactured by Additive Manufacturing

Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 639 ◽  
Author(s):  
José M. Torralba ◽  
Mónica Campos

High entropy alloys have attracted much interest over the last 16 years due to their promising an unusual properties in different fields that offer many new possible application. Additionally, additive manufacturing has drawn attention due to its versatility and flexibility ahead of a new material challenge, being a suitable technology for the development of metallic materials. Moreover, high entropy alloys have demonstrated that many gaps exist in the literature on its physical metallurgy, and in this sense, additive manufacturing could be a feasible technology for solving many of these challenges. In this review paper the newest literature on this topic is condensed into three different aspects: the different additive manufacturing technologies employed to process high entropy alloys, the influence of the processing conditions and composition on the expected structure and microstructure and information about the mechanical and corrosion behavior of these alloys.

Author(s):  
Modupeola Dada ◽  
Patricia Popoola ◽  
Ntombi Mathe ◽  
Sisa Pityana ◽  
Samson Adeosun ◽  
...  

2021 ◽  
Author(s):  
Yong Yang ◽  
Jingyang Zhang ◽  
Ziqing Zhou ◽  
Zhibo Zhang ◽  
Minhyuk Park ◽  
...  

Abstract Metallic glasses or amorphous alloys are an important engineering material that has a history of research of about 80-90 years. While different fast cooling methods were developed for multi-component metallic glasses between 1960s and 1980s, 1990s witnessed a surge of research interest in the development of bulk metallic glasses. Since then, one central theme of research in the metallic-glass community has been compositional design that aims to search for metallic glasses with a better glass forming ability, a larger size and/or more interesting properties, which can hence meet the demands from more important applications. In this review article, we focus on the recent development of chemically complex metallic glasses, such as high entropy metallic glasses, with new tools that were not available or mature yet until recently, such as the state-of-the-art additive manufacturing technologies, high throughput materials design techniques and the methods for big data analyses (e.g. machine learning and artificial intelligence). We also discuss the recent use of metallic glasses in a variety of novel and important applications, from personal healthcare, electric energy transfer to nuclear energy that plays a pivotal role in the battle against global warming.


Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 937 ◽  
Author(s):  
Shuying Chen ◽  
Yang Tong ◽  
Peter Liaw

Owing to the reduced defects, low cost, and high efficiency, the additive manufacturing (AM) technique has attracted increasingly attention and has been applied in high-entropy alloys (HEAs) in recent years. It was found that AM-processed HEAs possess an optimized microstructure and improved mechanical properties. However, no report has been proposed to review the application of the AM method in preparing bulk HEAs. Hence, it is necessary to introduce AM-processed HEAs in terms of applications, microstructures, mechanical properties, and challenges to provide readers with fundamental understanding. Specifically, we reviewed (1) the application of AM methods in the fabrication of HEAs and (2) the post-heat treatment effect on the microstructural evolution and mechanical properties. Compared with the casting counterparts, AM-HEAs were found to have a superior yield strength and ductility as a consequence of the fine microstructure formed during the rapid solidification in the fabrication process. The post-treatment, such as high isostatic pressing (HIP), can further enhance their properties by removing the existing fabrication defects and residual stress in the AM-HEAs. Furthermore, the mechanical properties can be tuned by either reducing the pre-heating temperature to hinder the phase partitioning or modifying the composition of the HEA to stabilize the solid-solution phase or ductile intermetallic phase in AM materials. Moreover, the processing parameters, fabrication orientation, and scanning method can be optimized to further improve the mechanical performance of the as-built-HEAs.


2020 ◽  
Vol 35 (15) ◽  
pp. 1963-1983 ◽  
Author(s):  
Jinyeon Kim ◽  
Akane Wakai ◽  
Atieh Moridi

Abstract


2017 ◽  
Vol 21 (6) ◽  
pp. 299-311 ◽  
Author(s):  
Chun-Yang Cheng ◽  
Ya-Chu Yang ◽  
Yi-Zhen Zhong ◽  
Yang-Yuan Chen ◽  
Tung Hsu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document