solid solution phase
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 46)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Hamed Naser-Zoshki ◽  
Ali-Reza Kiani-Rashid ◽  
Jalil Vahdati-Khaki

In this work, non-equiatomic W10Mo27Cr21Ti22Al20 refractory high-entropy alloy (RHEA) was produced using mechanical alloying followed by spark plasma sintering. The phase formation, microstructure, and compressive mechanical properties of the alloy were studied. During mechanical alloying, a Body-centered cubic (BCC) solid solution phase with a particle size of less than 1 µm was obtained after 18 h ball milling. The microstructure of the sintered sample exhibits three distinct phases consisting of two solid solution phases BCC1 and BCC2 as well as fine TiCxOy precipitates distributed in them. The volume fractions of each phase were about 79%, 8%, and 13%, respectively. The sintered W10Mo27Cr21Ti22Al20 showed yield strengths of 2465, 1506, 405, and 290 MPa at room temperature 600, 1000, and 1200°C, respectively, which are about twice that of the same refractory high-entropy alloy produced by vacuum arc melting. At 1000 and 1200°C, the strength after yielding gradually increased to 970 and 718 MPa at a compressive strain of 60%. The studied refractory high-entropy alloy can have good potential in high-temperature applications due to its high specific strength at elevated temperatures compared to conventional Ni-based superalloys and most as-reported refractory high-entropy alloys.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jing-Tong Liu ◽  
Si-Wei Liu ◽  
Hai-Lan Zheng ◽  
Wen-Jing Huang ◽  
Wei Zhao ◽  
...  

CoCrFeNiMn high-entropy alloy (HEA) has great potential for engineering application due to its good ductility and high fracture toughness at low temperature. It can be deposited on components as coatings to take advantage of its excellent properties and reduce the cost. In this study, CoCrFeNiMn HEA coatings were deposited on 316L stainless steel substrates by atmospheric plasma spraying (APS) technique, and a series of transient thermal shock tests were performed. It was found that the coatings contained two main phases: a face-centered cubic (FCC) solid solution phase and a flocculent oxides phase. The elemental contents of Co, Cr, Fe, and Ni were close to equal atomic percentage in the coating, while Mn was reduced significantly. The oxygen was mainly distributed in the dark flocculent oxides phase. After transient thermal shock tests, these two phases remained stable, but some tiny cracks appeared on the surface. Meanwhile, the microhardness of the coating after transient thermal shock tests also showed stable, ∼ 420 HV. Weibull statistics were used to analyze the reliability of the microhardness, and the Weibull modulus m was distributed from 9 to 15. The CoCrFeNiMn HEA coating exhibited high phase stability and excellent properties under transient thermal shock, making it have service advantages in extreme environments, especially in the fields of the development of future nuclear and aerospace structural materials.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1565
Author(s):  
Haijuan Mei ◽  
Jicheng Ding ◽  
Junfeng Zhao ◽  
Ting Wang ◽  
Kaijian Huang ◽  
...  

As an important high-power impulse magnetron sputtering (HIPIMS) parameter, charge voltage has a significant influence on the microstructure and properties of hard coatings. In this work, the Mo–Cu–V–N coatings were prepared at various charge voltages using HIPIMS technique to study their mechanical and tribological properties. The microstructure was analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The mechanical and tribological properties were investigated by nano-indentation and ball-on-disc tribometer. The results revealed that all the coatings showed a solid-solution phase of B1-MoVN, the V atoms dissolved into face-centered cubic (FCC) B1-MoN lattice by partial substitution of Mo, and formed a solid-solution phase. Even at a high Cu content (~8.8 at. %), the Cu atoms existed as an amorphous phase. When the charge voltage increased, more energy was put into discharge, and the microstructure changed from coarse structure into dense columnar structure, resulting in the highest hardness of 28.2 GPa at 700 V. An excellent wear performance with low friction coefficient of 0.32 and wear rate of 6.3 × 10−17 m3/N·m was achieved at 750 V, and the wear mechanism was dominated by mild abrasive and tribo-oxidation wear.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1876
Author(s):  
Pei-Hu Gao ◽  
Rui-Tao Fu ◽  
Bai-Yang Chen ◽  
Sheng-Cong Zeng ◽  
Bo Zhang ◽  
...  

High entropy alloy attracts great attention for its high thermal stability and corrosion resistance. A CoCrFeNiMn high-entropy alloy coating was deposited on grey cast iron through plasma transfer arc cladding. It formed fine acicular martensite near the grey cast iron, with columnar grains perpendicular to the interface between the grey cast iron substrate and the cladding layer as well as dendrite in the middle part of the coatings. Simple FCC solid solutions present in the coatings which were similar to the powder’s structure. The coating had a microhardness of 300 ± 21.5 HV0.2 when the cladding current was 80 A for the solid solution strengthening. The HEA coating had the highest corrosion potential of −0.253 V when the plasma current was 60 A, which was much higher than the grey cast iron’s corrosion potential of −0.708 V. Meanwhile, the coating had a much lower corrosion current density of 9.075 × 10−7 mA/cm2 than the grey cast iron’s 2.4825 × 10−6 mA/cm2, which reflected that the CoCrFeNiMn HEA coating had much better corrosion resistance and lower corrosion rate than the grey cast iron for single FCC solid solution phase and a relatively higher concentration of Cr in the grain boundaries than in the grains and this could lead to corrosion protection effects.


2021 ◽  
Vol 1 (4) ◽  
pp. 189-196
Author(s):  
Hossein Aghajani ◽  
Arvin Taghizadeh Tabrizi ◽  
Salva Arabpour Javadi ◽  
Mohammad Ehsan Taghizadeh Tabrizi ◽  
Aytak Homayouni ◽  
...  

Understanding the phase formation mechanisms in self-propagating high-temperature synthesis from the thermodynamical aspect of view is important. In this study, the phase formation of the ternary system of nickel-titanium-silicon was studied by using the HSC software V6.0, and phase formation is predicted by calculating the adiabatic temperature of exothermic reaction between reagents. Then, by using X-ray diffractometer analysis, the results of the simulation were evaluated by experimental achievements. Results showed a good correlation between thermodynamical calculation and prediction with experimental. It could be concluded that the equilibrium mechanism is the dominant mechanism in phase formation in the SHS synthesis method. NiTiSi solid solution phase is obtained from the reaction between Ti5Si3 and Ni2Si and Ni.


2021 ◽  
pp. 2102342
Author(s):  
Meng Huang ◽  
Jiexin Zhu ◽  
Ruohan Yu ◽  
Yu Liu ◽  
Xiong Liu ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1053
Author(s):  
Qingxian Hu ◽  
Xiaoli Wang ◽  
Xinwang Shen ◽  
Fanglian Fu ◽  
Zemin Tan

CoCrFeNiSiMoW medium-entropy alloy coatings (MEACs) were fabricated by plasma-arc surfacing welding on Q235 steel. The microstructures and mechanical properties of CoCrFeNiSiMoW MEACs were studied. CoCrFeNiSiMoW MEACs are made from a mixture of NiCrCoMo cubic (FCC) solid solution phase, (Fe, Ni), Mo1.24Ni0.76, and CoCx phases by XRD analysis. The average hardness values of the one- and two-layer CoCrFeNiSiMoW MEACs obtained were 186 ± 1.56 and 198 ± 1.78 HV, respectively. Compared with the one-layer CoCrFeNiSiMoW coating, the two-layer coating has a better wear performance due to its higher hardness. Its corrosion resistance is better because of its higher Ni content.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4945
Author(s):  
Ashutosh Sharma ◽  
Hansung Lee ◽  
Byungmin Ahn

The development of lightweight HEAs with high strength and low cost is an urgent requirement. In this study, equimolar AlCuSiFeX (X = Cr, Mn, Zn, Sn) lightweight HEAs were fabricated by advanced powder metallurgy. The mechanical alloying was performed for 45 h, and the powder compacts were densified at 650 °C. The final results revealed that AlCuSiFeSn lightweight HEA was composed of a single face-centered cubic (FCC) and Cu81Sn22, whereas AlCuSiFeZn showed a dual FCC and body-centered cubic (BCC) structures. Similarly, AlCuSiFeMn alloy contained a BCC + FCC phase with a µ-phase, whereas a σ-phase was present in AlCuSiFeCr in addition to FCC + BCC phases. We also calculated various thermodynamic parameters to predict the solid-solution phase stability of each of the above lightweight HEAs. It was found that lightweight HEAs with additive elements Sn and Zn tend to predominant FCC phases, whereas those with Cr and Mn result in major BCC with hard µ and σ phases, which further improve their mechanical strength. A maximum fracture strain of 23% was obtained for AlCuSiFeSn followed by 19% for AlCuSiFeZn HEA. The compressive fracture mechanisms of these lightweight HEAs are also discussed and reported here.


Author(s):  
Karthik Mathivanan ◽  
Peter Plapper

In laser joining of copper (Cu) and aluminum (Al) sheets, the Al sheet is widely chosen as the top surface for laser irradiation because of increased absorption of laser beam and lower melting temperature of Al in contrast to Cu. This research focus on welding from Cu side to Al sheet. The main objective of irradiating the laser beam from the copper side (Cu on top) is to exploit higher solubility of Al in Cu. A significantly lower laser power can be used with 515 nm laser in comparison to 1030 nm. In addition to low laser power, a stable welding is obtained with 515 nm. Because of this advantage, 515 nm is selected for the current research. By fusion of Cu and Al the two sheet metals are welded, with presence of beneficial Cu solid solution phase and Al+Al2Cu in the joint with the brittle phases intermixed between the ductile phase. Therefore the mixed composition strengthens the joint. However excessive mixing leads to formation of more detrimental phases and less ductile phases. Therefore optimum mixing must be maintained. Energy dispersive X-ray spectroscopy (EDS) analysis indicate that large amount of beneficial Cu solid solution and Al rich phases is formed in the strong joint. From the tensile shear test for a strong joint, fracture is obtained on the heat-affected zone (HAZ) of Al. Therefore the key for welding from copper side is to have optimum melt with beneficial phases like Cu and Al+ Al2Cu and the detrimental phases intermixed between the ductile phases


2021 ◽  
Author(s):  
Myoung Youp SONG ◽  
Young Jun KWAK

We compared the hydrogenation and dehydrogenation properties of Mg-based alloys to which small amounts of transition elements (Ni and Ti), halides (TaF5 and VCl3), and complex hydrides (LiBH4 and NaAlH4) were added through grinding in a hydrogen atmosphere (reactive milling). Mg-1.25Ni-1.25Ti is one of the samples compared, having a composition of 97.5 wt.% Mg + 1.25 wt.% Ni and 1.25 wt.% Ti. Even though Mg-1.25Ni-1.25Ti did not have the highest initial hydrogenation rate, it had the largest quantities of hydrogen absorbed and released for 60 min and the highest initial dehydrogenation rate. In addition, Mg-1.25Ni-1.25Ti did not show the incubation period in the dehydrogenation. We thus investigated the hydrogenation and dehydrogenation properties of Mg-1.25Ni-1.25Ti in more detail. Activated Mg-1.25Ni-1.25Ti absorbed 5.91 wt.% H in 12 bar H2 and released 5.80 wt.% H in 1.0 bar H2 at 593 K for 60 min at n = 3. For 5 wt.% hydrogen absorption by Mg-1.25Ni-1.25Ti, 18.7 min was required at 593 K in 12 bar H2 at n = 3. Although only small amounts of Ni and Ti were added, the hydrogenation and dehydrogenation properties of Mg were greatly improved. Ni and Ti-added Mg had a higher initial dehydrogenation rate and a larger Hd (60 min) than only Ni-added Mg, suggesting that the TiH1.924 and NiTi formed in Mg-1.25Ni-1.25Ti play roles in the increases in the initial dehydrogenation rate and Hd (60 min), probably acting as active sites for the nucleation of the Mg-H solid solution phase.


Sign in / Sign up

Export Citation Format

Share Document