scholarly journals Achievements of Nearly Zero Earing Defects on SPCC Cylindrical Drawn Cup Using Multi Draw Radius Die

Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1204
Author(s):  
Rudeemas Jankree ◽  
Sutasn Thipprakmas

In recent years, the old-fashioned cylindrical cup shapes are still widely used, and there are many defects which could not be solved yet. In the present research, the classical earing defects, which are mainly caused by the material mechanical property of the anisotropic property of the material (R-value), are focused on. The multi draw radius (MDR) deep drawing die is applied and investigated to achieve nearly zero earing defects by encountering the R-value during the deep drawing process. Based on the experiments, in different directions in the sheet plane, the somewhat concurrent plastic deformation could be controlled, and the uniform elongated grain microstructure and uniform strain distributions on the cup wall could be achieved. Therefore, on the basis of these characteristics, the earing defects could be prevented, and the nearly zero earing defects could be achieved. However, to achieve the nearly zero earing defects, the suitable MDR die design relating to the R-value should be strictly considered. In the present research, to apply the MDR die for the medium carbon steel sheet grade SPCC cylindrical drawn cup, the following was recommended: the large draw radius positioned at 45° to the rolling direction and the small draw radius positioned along the plane and at 90° to the rolling direction. Therefore, in the present research, it was originally revealed that the nearly zero earing defects could be successfully performed on the process by using the MDR die application.

Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 870 ◽  
Author(s):  
Wiriyakorn Phanitwong ◽  
Sutasn Thipprakmas

As a major sheet metal process for fabricating cup or box shapes, the deep drawing process is commonly applied in various industrial fields, such as those involving the manufacture of household utensils, medical equipment, electronics, and automobile parts. The limiting drawing ratio (LDR) is the main barrier to increasing the formability and production rate as well as to decrease production cost and time. In the present research, the multi draw radius (MDR) die was proposed to increase LDR. The finite element method (FEM) was used as a tool to illustrate the principle of MDR based on material flow. The results revealed that MDR die could reduce the non-axisymmetric material flow on flange and the asymmetry of the flange during the deep drawing process. Based on this material flow characteristic, the cup wall stretching and fracture could be delayed. Furthermore, the cup wall thicknesses of the deep drawn parts obtained by MDR die application were more uniform in each direction along the plane, at 45°, and at 90° to the rolling direction than those obtained by conventional die application. In the present research, a proper design for the MDR was suggested to achieve functionality of the MDR die as related to each direction along the plane, at 45°, and at 90° to the rolling direction. The larger draw radius positioned for at 45° to the rolling direction and the smaller draw radius positioned for along the plane and at 90° to the rolling direction were recommended. Therefore, by using proper MDR die application, the drawing ratio could be increased to be 2.75, an increase in LDR of approximately 22.22%.


2005 ◽  
Vol 488-489 ◽  
pp. 461-464 ◽  
Author(s):  
Yong Chao Xu ◽  
Shi Hong Zhang ◽  
H.M. Liu ◽  
Z.T. Wang ◽  
W.T. Zheng ◽  
...  

The extruded sheets were prepared at the temperature between 350ıand 400ı, and the magnesium alloy sheet was manufactured by a new method, cross rolling, in which the rolling direction was changed in each pass. At the time, deep drawing of magnesium alloy sheet was investigated at elevated temperatures. The results show that the sheet has refined-grain by cross-rolling after it was annealed at 250ı, and the formability is significantly improved at lower temperatures, which is superior to the extruded sheet and the one-way rolled sheet. Deep drawing of magnesium alloy was performed successfully, and cylindrical cup of limited drawing ratio (LDR) 2.6 and 35 mm deep rectangular box (65ı50) was achieved at the lower temperature of 170ı. The different types of fracture were analyzed and reasonable parameters were determined.


2017 ◽  
Vol 20 (4) ◽  
pp. 1111-1120 ◽  
Author(s):  
Anil Kumar Parida ◽  
Shatrughan Soren ◽  
Raghu Nandan Jha ◽  
Nelepu Krishnamurthy

2012 ◽  
Vol 249-250 ◽  
pp. 51-58
Author(s):  
Qing Wen Qu ◽  
Tian Ke Sun ◽  
Shao Qing Wang ◽  
Hong Juan Yu ◽  
Fang Li

A simulation of deep drawing process on the sheet metal was done by using Dynaform, the influence of blank holder force, deep drawing speed and friction coefficient on the forming speed of sheet metal in the deep drawing process were got. The forming speed of sheet metal determines the quality of deep drawing, in the deep drawing process the blank holder force and the deep drawing speed are controllable parameters, the friction coefficient can be intervened and controlled, and it’s a manifestation of the interaction of all parameters, the main factors which influence the friction coefficient just have blank holder force, deep drawing speed and lubrication except the material. The conclusion of this study provides the basic data for the analysis of the lubrication of mould, the study of lubricant and the prediction of the service life of deep drawing die.


2016 ◽  
Vol 56 (8) ◽  
pp. 1452-1461
Author(s):  
Anil Kumar Parida ◽  
Shatrughan Soren ◽  
Raghu Nandan Jha ◽  
Nelepu Krishnamurthy

Author(s):  
Francisco J. Colorado Alonso ◽  
Hugo I. Medelli´n Castillo ◽  
Pedro de J. Garci´a Zugasti ◽  
Dirk F. de Lange

The deep drawing process is widely used in industry because it allows the production of parts with reduced weight and good mechanical properties. However, the deep drawing process of non-cylindrical shapes still relies on experimental and trial and error methods, leading to high costs and long development times. The deformation mechanism of non-cylindrical cup drawing is theoretically very complex because of the large elasto-plastic stress and strain, and contact conditions between the tools and the sheet metal involved. In particular, several attempts have been tried in the past to perform theoretical and numerical analysis of rectangular cups. This paper presents an analysis of the allowable deep drawing height (DDH) of rectangular cups. The aim of this paper is twofold: 1) to analyze and estimate the allowable DDH of rectangular parts using theoretical, numerical (FEM) and experimental methods, and 2) identify the theoretical expression that predicts with the highest accuracy the allowable DDH of rectangular parts. A new theoretical expression for predicting this DDH is also proposed. To perform the study FEM is used together with the experimental data from industrial parts. The results show the accuracy of each theoretical expression in predicting the allowable DDH of rectangular parts.


2010 ◽  
Vol 2010.20 (0) ◽  
pp. _2111-1_-_2111-5_
Author(s):  
Jirasak Srirat ◽  
Koetsu Yamazaki ◽  
Satoshi Kitayama

Sign in / Sign up

Export Citation Format

Share Document