scholarly journals Precipitation and Growth Simulation of γ′ Phase in Single Crystal Superalloy DD6 with Multiphase-Field Method and Explicit Nucleation Algorithm

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1346
Author(s):  
Qingyan Xu ◽  
Yaqian Zhang

The microstructure evolution of Ni-based superalloys during heat treatment is of great significance for obtaining better service performance. However, heat treatment experimentation is costly and time-consuming, and sometimes fails to reveal physical mechanisms well. In the present study, a multiphase-field model coupled with an explicit nucleation algorithm was established to simulate the precipitation and growth of γ′ phase in DD6 superalloy, which can be applied to a multicomponent elastic-inhomogeneous system. The PanNickel© database was used to calculate thermodynamic and kinetic data in multicomponent superalloys. First, the coupling method of multiphase-field model and explicit nucleation algorithm was introduced. The coupled model was used to simulate the precipitation of γ′ phase under isothermal and non-isothermal conditions. It was found that a unimodal microstructure was formed under isothermal conditions and there was a “soft impingement” phenomenon, while a bimodal distribution composed of cuboidal γ′ precipitates and fine secondary γ′ precipitates was formed during a cooling process of 25–125 °C/min. The effect of cooling rate was studied. Then, the chemical and elastic driving forces were analyzed. It was found that Al and Ta contributed most to the chemical driving force, while Re and W gathered at the γ/γ′ interface and inhibited the growth of γ′ phase. γ′ precipitates had a cuboidal shape under the influence of elastic driving force. Finally, the growth and coarsening process of γ′ phase was studied and compared with the well-known Lifshitz−Slyosov−Wagner (LSW) theory. The growth of γ′ phase can be divided into rapid growth, coarsening and quasi-static coarsening stages according to the simulation results, among which the coarsening stage is basically consistent with the LSW theory. The current model can be used to simulate the precipitation and growth of single crystal superalloys where multicomponent and elastic effects are considered.

The nature and graphical representation of preferred orientations, or textures, in polycrystalline assemblies is outlined. The genesis of textures during plastic deformation of metals is examined in terms of single crystal behaviour, with special reference to the formation of deformation bands, and the influence of pre-existing texture on subsequent plastic deformation (including creep) is exemplified. Next, the nature and origin of textures formed by annealing after plastic deformation are analysed and the relative rôles of oriented nucleation and oriented growth assessed. A different kind of texture in stressed polycrystalline quartz is formed as a consequence of Dauphiné twinning. This form of twinning is explained in some detail and the origin of the textures explained in terms of the driving force that brings about Dauphiné twinning; these driving forces are compared with those that determine recrystallization in metals.


2010 ◽  
Vol 46 (8) ◽  
pp. 897-906 ◽  
Author(s):  
Jingyang CHEN ◽  
Bin ZHAO ◽  
Qiang FENG ◽  
Lamei CAO ◽  
Zuqing SUN

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 623
Author(s):  
Xiaoyan Wang ◽  
Meng Li ◽  
Yuansheng Wang ◽  
Chengjiang Zhang ◽  
Zhixun Wen

Taking nickel-based single crystal superalloy DD6 as the research object, different degrees of creep damage were prefabricated by creep interruption tests, and then the creep damage was repaired by the restoration heat treatment system of solid solution heat treatment and two-stage aging heat treatment. The results show that with the creep time increasing, the alloy underwent microstructure evolution including γ′ phase coarsening, N-type rafting and de-rafting. After the restoration heat treatment, the coarse rafted γ′ phase of creep damaged specimens dissolved, precipitated, grew up, and became cubic again. Except for the specimens with creep interruption of 100 h, the γ′ phase can basically achieve the same arrangement as the γ′ phase of the original sample. The comparison of the secondary creep test shows that the steady-state creep stage of the test piece after the restoration heat treatment is relatively increased, and the total creep life can reach the same level as the primary creep life. The high temperature creep properties of the tested alloy are basically recovered, and the restoration heat treatment effect is good.


Author(s):  
Xiandong Zhou ◽  
Christoph Reimuth ◽  
Peter Stein ◽  
Bai-Xiang Xu

AbstractThis work presents a regularized eigenstrain formulation around the slip plane of dislocations and the resultant non-singular solutions for various dislocation configurations. Moreover, we derive the generalized Eshelby stress tensor of the configurational force theory in the context of the proposed dislocation model. Based on the non-singular finite element solutions and the generalized configurational force formulation, we calculate the driving force on dislocations of various configurations, including single edge/screw dislocation, dislocation loop, interaction between a vacancy dislocation loop and an edge dislocation, as well as a dislocation cluster. The non-singular solutions and the driving force results are well benchmarked for different cases. The proposed formulation and the numerical scheme can be applied to any general dislocation configuration with complex geometry and loading conditions.


1996 ◽  
Vol 465 ◽  
Author(s):  
B. Gylling ◽  
L. Romero ◽  
L. Moreno ◽  
I. Neretnieks

ABSTRACTA coupled model concept which may be used for performance assessment of a nuclear repository is presented. The tool is developed by integration of two models, one near field and one far field model. A compartment model, NUCTRAN, is used to calculate the near field release from a damaged canister. The far field transport through fractured rock is simulated by using CHAN3D, based on a three-dimensional stochastic channel network concept. The near field release depends on the local hydraulic properties of the far field. The transport in the far field in turn depends on where the damaged canister(s) is located. The very large heterogeneities in the rock mass makes it necessary to study both the near field release properties and the location of release at the same time. In order to demonstrate the capabilities of the coupled model concept it is applied on a hypothetical repository located at the Hard Rock Laboratory in Äspö, Sweden. Two main items were studied; the location of a damaged canister in relation to fracture zones and the barrier function of the host rock. In the study of the near field rock as a transport barrier the effect of different tunnel excavation methods which may influence the damage level of the rock around the tunnel was addressed.


2015 ◽  
Vol 750 ◽  
pp. 139-144 ◽  
Author(s):  
De Long Shu ◽  
Su Gui Tian ◽  
Xin Ding ◽  
Jing Wu ◽  
Qiu Yang Li ◽  
...  

By means of heat treatment and creep property measurement, an investigation has made into the creep behaviors of a containing 4.5% Re nickel-base single crystal superalloy at high temperature. Results show that the elements W, Mo and Re are enriched in the dendrite arm regions, the elements Al, Ta, Cr and Co are enriched in the inter-dendrite region, and the segregation extent of the elements may be obviously reduced by means of heat treatment at high temperature. In the temperature ranges of 1070--1100 °C, the 4.5% Re single crystal nickel-based superallloy displays a better creep resistance and longer creep life. The deformation mechanism of the alloy during steady state creep is dislocations slipping in the γ matrix and climbing over the rafted γ′ phase. In the later stage of creep, the deformation mechanism of alloy is dislocations slipping in the γ matrix, and shearing into the rafted γ′ phase, which may promote the initiation and propagation of the micro-cracks at the interfaces of γ/γ′ phases up to the occurrence of creep fracture.


2018 ◽  
Vol 22 (3) ◽  
pp. 194-211 ◽  
Author(s):  
Yongqi Feng ◽  
Tianshu Zhang

Purpose The purpose of this paper is to provide a better understanding of the driving forces and structural changes of China as a market provider for Korea. This paper gives the answers for the following questions: How do China’s final demands trigger the growth of its imports from Korea? And what’s the impact of China’s final demands on the import in different industries? Design/methodology/approach Based on the Multi-Regional Input-Output model and World Input-Output Table database, this paper constructs the non-competitive imports input-output (IO) table of China to Korea. According to this table, we can calculate the induced imports coefficient and comprehensive induced import coefficients of China’s four final demands for imports from Korea in the 56 industries in China. Findings Among the four driving forces, the strongest one is changes in inventories and valuables. The impact of final consumption expenditure and fixed capital formation is much lower than that of changes in inventories and valuables, but they have a broader impact for the 56 industries. This paper finds out the China’s import induction of the final demands to Korea peaked in 2005 and 2010 and decreased greatly in 2014, so the position of China as market provider for Korea will no longer rise substantially, contrarily it will be in a steady state. Originality/value First, this paper constructs the non-competitive IO table to analyze the market provider issues between two countries and provides practical ways and methods for studies on the issues of imports and market provider. Second, this paper investigates the different roles of four final demands on driving force of China as market provider for Korea and the structural changes of China as a market provider for Korea among 56 industries from 2000 to 2014.


2013 ◽  
Vol 427-429 ◽  
pp. 133-136
Author(s):  
Qiang Song ◽  
Pu Zeng

The driving theory and the dynamic characteristics of small radius steering, medium radius steering and big radius steering is analyzed, and the simulation model is established under Matlab/Simulink. Then the track bulldozers steering performance of the three sheerings is simulated. The results show that, at different steering modes, the running states of the two sides driving motors are not the same, and the track driving forces of the two sides vary widely. The track driving force is great in the small radius steering model, while small in the medium and big radius steering models. The simulation results lay the foundation for dual-motor drive track bulldozers steering performance matching.


Sign in / Sign up

Export Citation Format

Share Document