scholarly journals Novel Characterization Techniques for Additive Manufacturing Powder Feedstock

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 720
Author(s):  
Benjamin Young ◽  
Joseph Heelan ◽  
Sean Langan ◽  
Matthew Siopis ◽  
Caitlin Walde ◽  
...  

Additive manufacturing is a rapidly expanding field, encompassing many methods to manufacture parts and coatings with a wide variety of feedstock. Metal powders are one such feedstock, with a range of compositions and morphologies. Understanding subtle changes in the feedstock is critical to ensure successful consolidation and quality control of both the feedstock and manufactured part. Current standards lack the ability to finely distinguish almost acceptable powders from barely acceptable ones. Here, novel means of powder feedstock characterization for quality control are demonstrated for the solid-state AM process of cold spray, though similar methods may be extrapolated to other additive methods as well. These characterization methods aim to capture the physics of the process, which in cold spray consists of high strain rate deformation of solid-state feedstock. To capture this, in this effort powder compaction was evaluated via rapidly applied loads, flowability of otherwise non-flowable powders was evaluated with the addition of vibration, and powder electrical resistivity was evaluated through compaction between two electrodes. Several powders, including aluminum alloys, chromium, and cermet composites, were evaluated in this effort, with each case study demonstrating the need for non-traditional characterization metrics as a means of quality control and classification of these materials.

2015 ◽  
Vol 137 (12) ◽  
Author(s):  
Floriane Laverne ◽  
Frédéric Segonds ◽  
Nabil Anwer ◽  
Marc Le Coq

Additive manufacturing (AM) is emerging as an important manufacturing process and a key technology for enabling innovative product development. Design for additive manufacturing (DFAM) is nowadays a major challenge to exploit properly the potential of AM in product innovation and product manufacturing. However, in recent years, several DFAM methods have been developed with various design purposes. In this paper, we first present a state-of-the-art overview of the existing DFAM methods, then we introduce a classification of DFAM methods based on intermediate representations (IRs) and product's systemic level, and we make a comparison focused on the prospects for product innovation. Furthermore, we present an assembly based DFAM method using AM knowledge during the idea generation process in order to develop innovative architectures. A case study demonstrates the relevance of such approach. The main contribution of this paper is an early DFAM method consisting of four stages as follows: choice and development of (1) concepts, (2) working principles, (3) working structures, and (4) synthesis and conversion of the data in design features. This method will help designers to improve their design features, by taking into account the constraints of AM in the early stages.


2020 ◽  
Vol 321 ◽  
pp. 03011
Author(s):  
Saden H. Zahiri ◽  
Stefan Gulizia ◽  
Leon Prentice

The difficulty in significantly reducing the cost of titanium products is partly related to the high cost of manufacturing. This includes additive manufacturing; e.g. Electron Beam Melting (EBM) and Selective Laser Melting (SLM), as well as traditional approaches that are based on a melting process. In particular, the cost of titanium powder has placed limits on the application of additive manufacturing approaches that involve melting to broader commercial applications beyond military, aerospace and implants. More than a decade ago, Australia adopted cold spray technology as a meltless additive manufacturing technique to fabricate titanium through a strategic initiative at Commonwealth Scientific and Industrial Research Organisation (CSIRO). The high deposition rate, ~100 times faster than the other additive technologies, and the solid state deposition were amongst the rationales for investment in cold spray technology. A combination of carefully designed experiments and sophisticated 3D models were developed to assess performance of the current industrial-scale cold spray systems for commercial clients. The success and challenges of this solid state deposition technology will be detailed with a focus on real industrial impact. The future development of melt-less titanium manufacturing using cold spray will be discussed with consideration of commercial and environmental benefits.


Sign in / Sign up

Export Citation Format

Share Document